On two-sided gamma-positivity for simple permutations

Shulamit Reches, Moriah Sigron Jerusalem College of Technology, Israel

joint work with Ron M. Adin (Bar-IIan University, Israel) Eli Bagno, Estrella Eisenberg (Jerusalem College of Technology, Israel)

Permutation Patterns 2018, Dartmouth College

The Eulerian number a_{n,k} counts the number of permutations in S_n, having des(π) = k, where des(π) is the number of descents of a permutation π ∈ S_n:

Example

- $\pi_1 = 123, des(\pi_1) = 0$
- $\pi_2 = 132, des(\pi_2) = 1,$
- $\pi_3 = 213, des(\pi_3) = 1$
- $\pi_4 = 231, des(\pi_4) = 1$
- $\pi_5 = \frac{312}{des}(\pi_5) = 1$
- $\pi_6 = \frac{321}{des}(\pi_6) = 2$
- $a_{3,0} = 1, a_{3,1} = 4, a_{3,2} = 1$

The Eulerian polynomial

• The (one-sided) Eulerian polynomial is

$$A_n(q) = \sum_{\pi \in S_n} q^{\operatorname{des}(\pi)} = \sum_{k=0}^{n-1} a_{n,k} q^k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3/31

The Eulerian polynomial

• The (one-sided) Eulerian polynomial is

$$A_n(q) = \sum_{\pi \in S_n} q^{\operatorname{des}(\pi)} = \sum_{k=0}^{n-1} a_{n,k} q^k$$

Example

$$egin{aligned} &A_2(q)=1+q\ &A_3(q)=1+4q+q^2\ &A_4(q)=1+11q+11q^2+q^3 \end{aligned}$$

Palindromic polynomials

Definition

A polynomial $f(q) = a_r q^r + a_{r+1} q^{r+1} + \cdots + a_s q^s$ is **palindromic** if its coefficients are the same when read from left to right as from right to left. equivalently, $f(q) = q^{r+s} f(1/q)$. we define the darga of f(q) as above to be r + s

Palindromic polynomials

Definition

A polynomial $f(q) = a_r q^r + a_{r+1}q^{r+1} + \cdots + a_s q^s$ is palindromic if its coefficients are the same when read from left to right as from right to left. equivalently, $f(q) = q^{r+s}f(1/q)$. we define the darga of f(q) as above to be r + s

Example

 $A_2(q) = 1 + q$ is a palindromic of darga 1 $A_3(q) = 1 + 4q + q^2$ is a palindromic of darga 2 $A_4(q) = 1 + 11q + 11q^2 + q^3$ is a palindromic of darga 3

Palindromic polynomials

Definition

A polynomial $f(q) = a_r q^r + a_{r+1} q^{r+1} + \cdots + a_s q^s$ is **palindromic** if its coefficients are the same when read from left to right as from right to left. equivalently, $f(q) = q^{r+s} f(1/q)$. we define the darga of f(q) as above to be r + s

Example

$$A_2(q) = 1 + q$$
 is a palindromic of darga 1
 $A_3(q) = 1 + 4q + q^2$ is a palindromic of darga 2
 $A_4(q) = 1 + 11q + 11q^2 + q^3$ is a palindromic of darga 3

Theorem

The (one-sided) Eulerian polynomial

$$A_n(q) = \sum_{k=0}^{n-1} a_{n,k} q^k$$

is palindromic of darga n-1

The set of palindromic polynomials of darga n - 1 is a vector space of dimension $\lfloor (n + 1)/2 \rfloor$, with gamma basis:

$$\Gamma_{n-1} = \{ q^j (1+q)^{n-1-2j} \mid 0 \le j \le \lfloor (n-1)/2 \rfloor \}$$

The set of palindromic polynomials of darga n - 1 is a vector space of dimension $\lfloor (n + 1)/2 \rfloor$, with gamma basis:

$$\Gamma_{n-1} = \{q^j(1+q)^{n-1-2j} \mid 0 \le j \le \lfloor (n-1)/2 \rfloor\}.$$

Thus there are real numbers $\gamma_{n,j}$ such that

$$A_n(q) = \sum_{0 \le j \le \lfloor (n-1)/2 \rfloor} \gamma_{n,j} q^j (1+q)^{n-1-2j}$$

イロン イロン イヨン イヨン 二日

5/31

 It has been proved (by Foata and Schützenberger) that the coefficients γ_{n,j} are actually non-negative integers.

- It has been proved (by Foata and Schützenberger) that the coefficients $\gamma_{n,i}$ are actually non-negative integers.
- A combinatorial proof, based on an action called 'valley hopping' which has its roots in the work of Foata and Strehl from 1974, was re-discovered by Shapiro, Woan, and Getu in 1983, and was dusted off more recently by Branden in 2008.

Definition

Let $A_n(s, t)$ be the two-sided Eulerian polynomial

$$A_n(s,t) = \sum_{\pi \in S_n} s^{\operatorname{des}(\pi)} t^{\operatorname{ides}(\pi)}.$$

イロン イロン イヨン イヨン 二日

where $ides(\pi) = des(\pi^{-1})$

Example

The two-sided Eulerian polynomial for S_4 is:

$$A_4(s,t) = 1 + 10st + 10(st)^2 + (st)^3 + st^2 + s^2t.$$

Its matrix of coefficients is

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 10 & 1 & 0 \\ 0 & 1 & 10 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right),$$

and is clearly symmetric with respect to both diagonals.

Example

The two-sided Eulerian polynomial for S_4 is:

$$A_4(s,t) = 1 + 10st + 10(st)^2 + (st)^3 + st^2 + s^2t.$$

Its matrix of coefficients is

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 10 & 1 & 0 \\ 0 & 1 & 10 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right),$$

and is clearly symmetric with respect to both diagonals.

A bivariate polynomial is **palindromic of darga** n - 1 if its $n \times n$ matrix of coefficients is symmetric with respect to both diagonals.

The two-sided Eulerian polynomial $A_n(s, t)$ is palindromic of darga n - 1.

The two-sided Eulerian polynomial $A_n(s, t)$ is palindromic of darga n - 1.

Theorem

The set of bivariate palindromic polynomials of darga n - 1 is a vector space with **bivariate gamma basis**

$$\Gamma_{n-1} = \{ (st)^i (s+t)^j (1+st)^{n-1-j-2i} \mid i,j \ge 0, \, 2i+j \le n-1 \}.$$

The two-sided Eulerian polynomial $A_n(s, t)$ is palindromic of darga n - 1.

Theorem

The set of bivariate palindromic polynomials of darga n - 1 is a vector space with **bivariate gamma basis**

$$\Gamma_{n-1} = \{ (st)^i (s+t)^j (1+st)^{n-1-j-2i} \mid i,j \ge 0, \, 2i+j \le n-1 \}.$$

Example

$$A_3(s,t) = (1+st)^2 + 2st A_4(s,t) = (1+st)^3 + 7st(1+st) + st(s+t)$$

Theorem (Gessel's conjecture, Lin's theorem)

For each $n \ge 1$ there exist **nonnegative integers** $\gamma_{n,i,j}$ $(i, j \ge 0, 2i + j \le n - 1)$ such that

$$A_n(s,t) = \sum_{i,j} \gamma_{n,i,j}(st)^i (s+t)^j (1+st)^{n-1-j-2i}$$

No combinatorial proof of Gessel's conjecture is known.

Definition

Let $\pi = a_1 \dots a_n \in S_n$. A block (or interval) of π is a nonempty contiguous sequence of entries $a_i a_{i+1} \dots a_{i+k}$ whose values also form a contiguous sequence of integers.

Definition

Let $\pi = a_1 \dots a_n \in S_n$. A block (or interval) of π is a nonempty contiguous sequence of entries $a_i a_{i+1} \dots a_{i+k}$ whose values also form a contiguous sequence of integers.

Example

If $\pi=$ 2647513 then 6475 is a block but 64751 is not.

Each permutation can be decomposed into singleton blocks, and also forms a single block by itself. These are the *trivial blocks* of the permutation. All other blocks are called *proper*.

Definition

A permutation is *simple* if it has no proper blocks.

Each permutation can be decomposed into singleton blocks, and also forms a single block by itself. These are the *trivial blocks* of the permutation. All other blocks are called *proper*.

Definition

A permutation is *simple* if it has no proper blocks.

Example

- The simple permutation of order 1 is 1
- The simple permutations of order 2 are: 12 and 21
- There are no simple permutations of order 3.
- The simple permutations of order 4 are: 2413 3142

Example

The permutation 3517246 is simple.

Definition (A.B.E.R.S.)

For each positive integer *n*, define the **two-sided Eulerian Polynomial for simple permutations**

$$simp_n(s, t) = \sum_{\sigma \in Simp_n} s^{\operatorname{des}(\sigma)} t^{\operatorname{ides}(\sigma)}$$

where $Simp_n$ is the set of simple permutations of length n.

Definition (A.B.E.R.S.)

For each positive integer *n*, define the **two-sided Eulerian Polynomial for simple permutations**

$$simp_n(s, t) = \sum_{\sigma \in Simp_n} s^{des(\sigma)} t^{ides(\sigma)}$$

where $Simp_n$ is the set of simple permutations of length n.

• $simp_n(s, t)$ is palindromic of darga n - 1.

Definition (A.B.E.R.S.)

For each positive integer *n*, define the **two-sided Eulerian Polynomial for simple permutations**

$$simp_n(s,t) = \sum_{\sigma \in Simp_n} s^{\operatorname{des}(\sigma)} t^{\operatorname{ides}(\sigma)}$$

where $Simp_n$ is the set of simple permutations of length n.

- $simp_n(s, t)$ is palindromic of darga n 1.
- Therefore it has a representation as a linear combination of the gamma basis, i.e., there exit real numbers $\gamma_{n,i,j}$ such that

$$simp_n(s,t) = \sum_{Simp_n} \gamma_{n,i,j}(st)^i (s+t)^j (1+st)^{n-1-j-2i}$$

13/31

(日) (部) (注) (注) (三)

Conjecture [A.B.E.R.S]: The coefficients of the polynomial are nonnegative integers:

For each $n \ge 1$ there exist **nonnegative integers** $\gamma_{n,i,j}$ $(i, j \ge 0, 2i + j \le n - 1)$ such that

$$simp(s,t) = \sum_{Simp_n} \gamma_{n,i,j} (st)^i (s+t)^j (1+st)^{n-1-j-2i}$$

イロト イヨト イヨト イヨト 三日

14/31

Two-sided Eulerian Polynomial for simple permutations

- $simp_1(s, t) = 1$.
- $simp_2(s, t) = 1 + st$.
- $simp_4(s, t) = s^2t + st^2 = st(s + t)$.
- $simp_5(s, t) = 6(st)^2$.
- $simp_6(s,t) = st(s+t)^2(1+st) + 5(st)^2(1+st) + 14(st)^2(s+t)$

In fact, our conjecture has been verified by computer for all $n \leq 12$.

• Gessel's conjecture: The two sided Eulerian polynomials are gamma positive.

- Gessel's conjecture: The two sided Eulerian polynomials are gamma positive.
- It was proved by Lin, but there is no combinatorial proof.

- Gessel's conjecture: The two sided Eulerian polynomials are gamma positive.
- It was proved by Lin, but there is no combinatorial proof.
- Definition (ABERS): Two sided Eulerian polynomials for simple permutations

- Gessel's conjecture: The two sided Eulerian polynomials are gamma positive.
- It was proved by Lin, but there is no combinatorial proof.
- Definition (ABERS): Two sided Eulerian polynomials for simple permutations
- Conjecture (ABERS): The two sided Eulerian polynomials for simple permutations are gamma positive.

- Gessel's conjecture: The two sided Eulerian polynomials are gamma positive.
- It was proved by Lin, but there is no combinatorial proof.
- Definition (ABERS): Two sided Eulerian polynomials for simple permutations
- Conjecture (ABERS): The two sided Eulerian polynomials for simple permutations are gamma positive.
- Provided the settlement of our conjecture, we present a combinatorial proof of Lin's Theorem.

Example

$4523 \ 98 \ 1 \ 67 = 2413[3412, 21, 1, 12].$

note that 3412 is not simple, and we can write 3412 = 21[12, 12]

The tree of $\sigma = 452398167 = 2413[21[12, 12], 21, 1, 12]$

4日 > 4日 > 4日 > 4目 > 4目 > 目 の Q ()
18/31

Uniqueness?

< □ > < 部 > < 差 > < 差 > 差 ● < 2 > 2 の (~ 19/31

Trees for the permutation $\sigma = 4321$

1

20/31

Trees for the permutation $\sigma = 4321$

Definition

A tree T is called a *G*-tree if it satisfies:

- Each leaf is labeled by 1.
- Each internal node is labeled by a simple permutation (≠ 1), and the number of its children is equal to the length of the permutation.
- The labels in each binary right chain (BRC) alternate between 12 and 21.

Denote by \mathcal{GT}_n the set of all G-trees with *n* leaves.

Every permutation has a unique G-tree.

Lemma [A.B.E.R.S.]: Let $\sigma = \pi[\alpha_1, \dots, \alpha_k]$. Then

$$\operatorname{des}(\sigma) = \operatorname{des}(\pi) + \sum_{i=1}^{n} \operatorname{des}(\alpha_i)$$

and

$$\operatorname{ides}(\sigma) = \operatorname{ides}(\pi) + \sum_{i=1}^{n} \operatorname{ides}(\alpha_i)$$

therefore

$$s^{\operatorname{des}(\sigma)}t^{\operatorname{ides}(\sigma)} = s^{\operatorname{des}(\pi)}t^{\operatorname{ides}(\pi)}\prod_{i=1}^n s^{\operatorname{des}(lpha_i)}t^{\operatorname{ides}(lpha_i)}$$

Two steps of the combinatorial proof for Lin's Theorem

- Divide the set of trees into equivalence classes.
- Prove that the Eulerian polynomial of each class is gamma positive (based on our conjecture regarding gamma positivity of simple permutations).

The tree for $\sigma = 452398167$

< □ > < 部 > < 書 > < 書 > 差 の Q (0 25/31

Simplified tree

Definition

For permutations $\sigma_1, \sigma_2 \in S_n$ define $\sigma_1 \sim \sigma_2$ if $T'_{\sigma_1} = T'_{\sigma_2}$. Clearly \sim is an equivalence relation on S_n , with each equivalence class corresponding to a unique simplified tree T'. Denote such a class by A(T'). (With the single restriction that the labels in each BRC must alternate between 12 and 21, starting with either of them.)

Simplified tree

The polynomial of this simplified tree

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 29/31 It thus follows that for each simplified tree T', the polynomial

 σ

$$\sum_{\in A(T')} s^{\operatorname{des}(\sigma)} t^{\operatorname{ides}(\sigma)}$$

is a product of factors, as follows:

- Each internal node with label $k \ge 4$ contributes a factor $simp_k(s, t)$.
- Each BRC of even length 2k contributes a factor $2(st)^k$.
- Each BRC of odd length 2k + 1 contributes a factor $(st)^k(1 + st)$.

By our conjecture, all those factors are gamma-positive, and so is their product. Summing over all equivalence classes in S_n completes the combinatorial proof for Lin's Theorem.

Thank you!

< □ > < 部 > < 差 > < 差 > 差 ● < 2 > 31/31