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The Eulerian numbers

The Eulerian number an,k counts the number of permutations in Sn,
having des(π) = k, where des(π) is the number of descents of a
permutation π ∈ Sn:

Example
π1 = 123, des(π1) = 0
π2 = 132, des(π2) = 1,
π3 = 213, des(π3) = 1
π4 = 231, des(π4) = 1
π5 = 312, des(π5) = 1
π6 = 321, des(π6) = 2
a3,0 = 1, a3,1 = 4, a3,2 = 1
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The Eulerian polynomial

The (one-sided) Eulerian polynomial is

An(q) =
∑
π∈Sn

qdes(π) =
n−1∑
k=0

an,kqk

Example
A2(q) = 1 + q
A3(q) = 1 + 4q + q2

A4(q) = 1 + 11q + 11q2 + q3
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Palindromic polynomials

Definition
A polynomial f (q) = ar qr + ar+1qr+1 + · · ·+ asqs is palindromic if its
coefficients are the same when read from left to right as from right to left.
equivalently, f (q) = qr+s f (1/q).
we define the darga of f (q) as above to be r + s

Example
A2(q) = 1 + q is a palindromic of darga 1
A3(q) = 1 + 4q + q2 is a palindromic of darga 2
A4(q) = 1 + 11q + 11q2 + q3 is a palindromic of darga 3

Theorem
The (one-sided) Eulerian polynomial

An(q) =
n−1∑
k=0

an,kqk

is palindromic of darga n − 1
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The Gamma Basis

Theorem
The set of palindromic polynomials of darga n − 1 is a vector space of
dimension b(n + 1)/2c, with gamma basis:

Γn−1 = {qj(1 + q)n−1−2j | 0 ≤ j ≤ b(n − 1)/2c}.

Thus there are real numbers γn,j such that

An(q) =
∑

0≤j≤b(n−1)/2c

γn,jqj(1 + q)n−1−2j .
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The Gamma Basis

It has been proved (by Foata and Schützenberger) that the
coefficients γn,j are actually non-negative integers.

A combinatorial proof, based on an action called ’valley hopping’
which has its roots in the work of Foata and Strehl from 1974, was
re-discovered by Shapiro, Woan, and Getu in 1983, and was dusted
off more recently by Branden in 2008.
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Two-sided Eulerian Polynomial

Definition
Let An(s, t) be the two-sided Eulerian polynomial

An(s, t) =
∑
π∈Sn

sdes(π)t ides(π).

where ides(π) = des(π−1)
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Two-sided Eulerian Polynomial

Example
The two-sided Eulerian polynomial for S4 is:

A4(s, t) = 1 + 10st + 10(st)2 + (st)3 + st2 + s2t.

Its matrix of coefficients is
1 0 0 0
0 10 1 0
0 1 10 0
0 0 0 1

 ,

and is clearly symmetric with respect to both diagonals.

A bivariate polynomial is palindromic of darga n − 1 if its n × n matrix
of coefficients is symmetric with respect to both diagonals.
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The Gamma Basis

Theorem
The two-sided Eulerian polynomial An(s, t) is palindromic of darga n− 1.

Theorem
The set of bivariate palindromic polynomials of darga n − 1 is a vector
space with bivariate gamma basis

Γn−1 = {(st)i (s + t)j(1 + st)n−1−j−2i | i , j ≥ 0, 2i + j ≤ n − 1}.

Example
A3(s, t) = (1 + st)2 + 2st
A4(s, t) = (1 + st)3 + 7st(1 + st) + st(s + t)
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Two sided gamma-positivity

Theorem (Gessel’s conjecture, Lin’s theorem)
For each n ≥ 1 there exist nonnegative integers γn,i,j
(i , j ≥ 0, 2i + j ≤ n − 1) such that

An(s, t) =
∑
i,j
γn,i,j(st)i (s + t)j(1 + st)n−1−j−2i .

No combinatorial proof of Gessel’s conjecture is known.
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Simple permutations

Definition
Let π = a1 . . . an ∈ Sn. A block (or interval) of π is a nonempty
contiguous sequence of entries aiai+1 . . . ai+k whose values also form a
contiguous sequence of integers.

Example
If π = 2647513 then 6475 is a block but 64751 is not.
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Simple permutations

Each permutation can be decomposed into singleton blocks, and also
forms a single block by itself. These are the trivial blocks of the
permutation. All other blocks are called proper.

Definition
A permutation is simple if it has no proper blocks.

Example
The simple permutation of order 1 is 1
The simple permutations of order 2 are: 12 and 21
There are no simple permutations of order 3.
The simple permutations of order 4 are: 2413 3142

Example
The permutation 3517246 is simple.

12 / 31



Simple permutations

Each permutation can be decomposed into singleton blocks, and also
forms a single block by itself. These are the trivial blocks of the
permutation. All other blocks are called proper.

Definition
A permutation is simple if it has no proper blocks.

Example
The simple permutation of order 1 is 1
The simple permutations of order 2 are: 12 and 21
There are no simple permutations of order 3.
The simple permutations of order 4 are: 2413 3142

Example
The permutation 3517246 is simple.

12 / 31



Two-sided Eulerian Polynomial for simple permutations

Definition (A.B.E.R.S.)
For each positive integer n, define the two-sided Eulerian Polynomial
for simple permutations

simpn(s, t) =
∑

σ∈Simpn

sdes(σ)t ides(σ)

where Simpn is the set of simple permutations of length n.

simpn(s, t) is palindromic of darga n − 1.
Therefore it has a representation as a linear combination of the
gamma basis, i.e., there exit real numbers γn,i,j such that

simpn(s, t) =
∑

Simpn

γn,i,j(st)i (s + t)j(1 + st)n−1−j−2i .

13 / 31



Two-sided Eulerian Polynomial for simple permutations

Definition (A.B.E.R.S.)
For each positive integer n, define the two-sided Eulerian Polynomial
for simple permutations

simpn(s, t) =
∑

σ∈Simpn

sdes(σ)t ides(σ)

where Simpn is the set of simple permutations of length n.

simpn(s, t) is palindromic of darga n − 1.

Therefore it has a representation as a linear combination of the
gamma basis, i.e., there exit real numbers γn,i,j such that

simpn(s, t) =
∑

Simpn

γn,i,j(st)i (s + t)j(1 + st)n−1−j−2i .

13 / 31



Two-sided Eulerian Polynomial for simple permutations

Definition (A.B.E.R.S.)
For each positive integer n, define the two-sided Eulerian Polynomial
for simple permutations

simpn(s, t) =
∑

σ∈Simpn

sdes(σ)t ides(σ)

where Simpn is the set of simple permutations of length n.

simpn(s, t) is palindromic of darga n − 1.
Therefore it has a representation as a linear combination of the
gamma basis, i.e., there exit real numbers γn,i,j such that

simpn(s, t) =
∑

Simpn

γn,i,j(st)i (s + t)j(1 + st)n−1−j−2i .

13 / 31



Conjecture Adin,Bagno,Eisenberg,R,S

Conjecture [A.B.E.R.S]: The coefficients of the polynomial are
nonnegative integers:
For each n ≥ 1 there exist nonnegative integers γn,i,j
(i , j ≥ 0, 2i + j ≤ n − 1) such that

simp(s, t) =
∑

Simpn

γn,i,j(st)i (s + t)j(1 + st)n−1−j−2i .
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Two-sided Eulerian Polynomial for simple permutations

simp1(s, t) = 1.
simp2(s, t) = 1 + st.
simp4(s, t) = s2t + st2 = st(s + t).
simp5(s, t) = 6(st)2.
simp6(s, t) = st(s + t)2(1 + st) + 5(st)2(1 + st) + 14(st)2(s + t)

In fact, our conjecture has been verified by computer for all n ≤ 12.
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Review

Gessel’s conjecture: The two sided Eulerian polynomials are gamma
positive.

It was proved by Lin, but there is no combinatorial proof.
Definition (ABERS): Two sided Eulerian polynomials for simple
permutations
Conjecture (ABERS): The two sided Eulerian polynomials for simple
permutations are gamma positive.
Provided the settlement of our conjecture, we present a
combinatorial proof of Lin’s Theorem.
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Decomposition of a permutation

Example

4523 98 1 67 = 2413[3412, 21, 1, 12].

note that 3412 is not simple, and we can write 3412 = 21[12, 12]
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The tree of σ = 452398167 = 2413[21[12, 12], 21, 1, 12]
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Figure: The tree Tσ for σ = 452398167
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Uniqueness?
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Trees for the permutation σ = 4321
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G-tree

Definition
A tree T is called a G-tree if it satisfies:

1 Each leaf is labeled by 1.
2 Each internal node is labeled by a simple permutation (6= 1), and

the number of its children is equal to the length of the permutation.
3 The labels in each binary right chain (BRC) alternate between 12

and 21.
Denote by GT n the set of all G-trees with n leaves.

Every permutation has a unique G-tree.
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The des and ides of inflation

Lemma [A.B.E.R.S.]:
Let σ = π[α1, . . . , αk ]. Then

des(σ) = des(π) +
n∑

i=1
des(αi )

and

ides(σ) = ides(π) +
n∑

i=1
ides(αi )

therefore

sdes(σ)t ides(σ) = sdes(π)t ides(π)
n∏

i=1
sdes(αi )t ides(αi )
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Two steps of the combinatorial proof for Lin’s Theorem

Divide the set of trees into equivalence classes.
Prove that the Eulerian polynomial of each class is gamma positive
(based on our conjecture regarding gamma positivity of simple
permutations).
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The tree for σ = 452398167
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Simplified tree
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Equivalence classes of trees

Definition
For permutations σ1, σ2 ∈ Sn define σ1 ∼ σ2 if T ′σ1

= T ′σ2
. Clearly ∼ is

an equivalence relation on Sn, with each equivalence class corresponding
to a unique simplified tree T ′. Denote such a class by A(T ′).
(With the single restriction that the labels in each BRC must alternate
between 12 and 21, starting with either of them.)
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Simplified tree
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The polynomial of this simplified tree
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The polynomial of a simplified tree

It thus follows that for each simplified tree T ′, the polynomial∑
σ∈A(T ′)

sdes(σ)t ides(σ)

is a product of factors, as follows:
Each internal node with label k ≥ 4 contributes a factor simpk(s, t).
Each BRC of even length 2k contributes a factor 2(st)k .
Each BRC of odd length 2k + 1 contributes a factor (st)k(1 + st).

By our conjecture, all those factors are gamma-positive, and so is their
product. Summing over all equivalence classes in Sn completes the
combinatorial proof for Lin’s Theorem.
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Thank you!

31 / 31


