Enumerating permutations sortable by
k passes through a pop-stack

Anders Claesson
Bjarki Agtist Gudmundsson
University of Iceland

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

3124

|

3124

|

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

124

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

24

H

24

H

2/20

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

1

24

13

H

24

|

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

12

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

123

132

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

123

1324

2/20

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

1234

1324

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

Theorem (Pudwell & Smith, 2017)

A permutation 1 is sortable by two passes
through a pop-stack if and only if 7 avoids
2341, 3412, 3421, 4123, 4231, 4312,
41352 and 41352.

1234

1324

|

|

2/20

Theorem (Knuth, 1968)

A permutation is sortable by a stack
if and only if Tt avoids 231.

Theorem (Avis & Newborn, 1981)

A permutation Tuis sortable by a pop-stack
if and only if 7t avoids 231 and 321.

Theorem (Pudwell & Smith, 2017)

A permutation 1 is sortable by two passes
through a pop-stack if and only if 7 avoids
2341, 3412, 3421, 4123, 4231, 4312,
41352 and 41352.

1—+1—4x
2x
x—1
2x —1
B+ +x—1

2x3 +x24+2x—1

2/20

Stacks vs pop-stacks

A stack is a LIFO data structure with two operations:
» Push: Add an element to the top of the stack.

» Pop: Remove the top-most element from the stack.

A pop-stack is a LIFO data structure with two operations:
» Push: Add an element to the top of the stack.
» Pop: Remove all elements from the stack.

We'll insist that elements on the stack are increasing when read
from top to bottom and sort greedily w.r.t. the push operation.

How many permutations are sortable by
k passes through a pop-stack?

x—1
k=1
2x—1
3 2
—1
k—2 X’ +x"+x

2x3 4+ x2 4+ 2x —1

k>3 Rational?

4/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

5/ 2
5/20

v

v

v

v

v

A sorting trace of length 9 and order 3.

Numbers within a block are in decreasing order.
Adjacent numbers in different blocks form an ascent.
Each perm is the “blockwise reversal” of the one above.

The last permutation is the identity.

7

5 2]4]9 18 6 3

5/7 4 1]9 3[6]8

5 1[4[7 3[9 68

1/5 4 3|7 6|9 8

2
2
2
1

23456789

A sorting trace

addaadadda
aaaddadaaa
aadaadadaa
adaddadada

The same sorting plan

Its sorting plan

0,9,10,5,5,10,5,10,9,0

.. and its encoding

7

5 2]4]9 18 6 3

5/7 4 1]9 3[6]8

5 1[4[7 3[9 68

1/5 4 3|7 6|9 8

2
2
2
1

23456789

A sorting trace

0110010110
0001101000
0010010100
0101101010

The same sorting plan

Its sorting plan

0,9,10,5,5,10,5,10,9,0

.. and its encoding

Basic bijections

r[k-pop-stack-sortable permutations J

ha
sort using pop-stack take topmost
\\} permutation
drop numbers append id, then

blockwise rev.

T

Bijection between k-pop-stack-sortable permutations of [n] and
sorting plans of length n and order k

An operation array of length 9 and order 3:

An operation array of length 9 and order 3:

» Assume there is a sorting trace with this operation array.

An operation array of length 9 and order 3:

1 2 3 4 5 6 7 8 9

» Assume there is a sorting trace with this operation array.

» The last permutation must be the identity.

An operation array of length 9 and order 3:

1 2 3 4 5 6 7 8 9

» Assume there is a sorting trace with this operation array.
» The last permutation must be the identity.

» Each perm is the “blockwise reversal” of the perm above.

An operation array of length 9 and order 3:

» Assume there is a sorting trace with this operation array.

» The last permutation must be the identity.

» Each perm is the “blockwise reversal” of the perm above.

An operation array of length 9 and order 3:

1 2 3 4 5 6 7 8 9

» Assume there is a sorting trace with this operation array.
» The last permutation must be the identity.

» Each perm is the “blockwise reversal” of the perm above.

An operation array of length 9 and order 3:

1 2 3 4 5 6 7 8 9

» Assume there is a sorting trace with this operation array.
» The last permutation must be the identity.

» Each perm is the “blockwise reversal” of the perm above.

An operation array of length 9 and order 3:

3 2 4 6 7 1 8 9 5
2 3 4 1 7 6 9 8 5
2 1 4 3 7 6 5 8 9
1 2 3 4 5 6 7 8 9

» Assume there is a sorting trace with this operation array.
» The last permutation must be the identity.

» Each perm is the “blockwise reversal” of the perm above.

8/20

An operation array of length 9 and order 3:

v

v

v

v

3 2 4 6 7 1 8 9 5
2 3 4 1 7 6 9 8 5
2 1 4 3 7 6 5 8 9
1 2 3 4 5 6 7 8 9

Assume there is a sorting trace with this operation array.
The last permutation must be the identity.
Each perm is the “blockwise reversal” of the perm above.

This semitrace is not a (proper) trace, so the operation
array is not a sorting plan!

8/20

7 3 5|1]6 8 2

7 3 5|1

5 3]7 1]4[2]s

Ik

5 3[7 1

3|5 1[7 4 2|6

3 1]5 2[4[7 6

1[3 2|5 4]6]|7

4
6
8
8
8
8

8
2
3b1%%@
3 1|5 @[@[7
6

1|3 &5 @

1 234567

An example semitrace

[| |

A forbidden segment

1Q3a 5 6

Following a and b

QQ |CO|Co | Co |O [(H

Lemma
In a sorting plan, each but the first row has blocks of size < 3.

Proof

Lemma

If T is a forbidden segment in some semitrace of order k, then
IT| < 4k —5.

Proof
1 b ! 1 a
2 b | | a
) o [el
4 : b a :
Corollary

For a fixed k, there are finitely many forbidden segments of
order k, and they can be listed.

11 /20

» For k =1 there are no forbidden segments.

» For k = 2 the forbidden segments are

1 0

7

5 2]4]9 18 6 3

5/7 4 1]9 3[6]8

5 1[4[7 3[9 68

1/5 4 3|7 6|9 8

2
2
2
1

23456789

A sorting trace

addaadadda
aaaddadaaa
aadaadadaa
adaddadada

The same sorting plan

Its sorting plan

0,9,10,5,5,10,5,10,9,0

.. and its encoding

7

5 2]4]9 18 6 3

5/7 4 1]9 3[6]8

5 1[4[7 3[9 68

1/5 4 3|7 6|9 8

2
2
2
1

23456789

A sorting trace

0110010110
0001101000
0010010100
0101101010

The same sorting plan

Its sorting plan

0,9,10,5,5,10,5,10,9,0

.. and its encoding

» Encode an operation array of length n and order k as a
sequence of 1 integers, each in the range

r={0,1,...,2k—1}.
» Thus operation arrays can be seen as strings in I'*.

» A DFA for the language of operation arrays, W, is

0 0

el

start —

ol
o

=

14 /20

> Let A; be the set of symbols in ¥ that represent a column
that has a bar in the ith row

» The following DFA, R;, recognizes the operation arrays that
have blocks of size at most 3 in row i:

r

» Operation arrays that have blocks of size at most 3 in all
but the first row is thus recognized by the DFA
WNRyN---NRy.

» Recall that sorting plans are characterized by avoiding
forbidden segments.

> Let us encode a segment M in the same manner as we
encode operation arrays, resulting in the sequence
miy...,my.

» An operation array A contains the segment M if and only if
the encoding of A contains m; - - - my as a factor.

» The following NFA, Qp1, recognizes strings over X that
contain the encoding of M as a factor:

)X z

mq

start — O T2, mHO m O

16 /20

Let F be the set of forbidden segments. Then

k
S=Wn[(Rn [)Qr
i=2

FeF

recognizes the set of sorting plans.

Theorem
The language S ={w € L* : w is a sorting plan } is regular.

7/20

Main result

> Let p(n) be the number of k-pop-stack-sortable
permutations of [n].

> Let Pr(x) = Zpk(n)x”.

n>0

Theorem
The generating function Py (x) is rational.

Data

This has been implemented. Running on a big cluster we got:

k |1 2 3 4 5 6
degree 1 3 10 25 71 213
growth rate | 2.0000 2.6590 3.4465 4.2706 5.1166 5.9669
vertices 4 5 12 32 99 339
edges 8 11 34 120 477 2010

All the generating functions, source code, and text files defining
the DFAs can be found on GitHub:

github.com/SuprDewd/popstacks

/20

Generating functions

1

2

5,6

(x—1)/(2x—1)
B+x2+x—1)/23+x2+2x—1)

(2x10 + 4x? + 2x8 + 5x7 + 11x0 4 8x° 4 6x* 4 6x3 +2x> 4+ x —
1) / (4x'048x%+4x8+10x"+22x0+16x° +8x* +6x3+2x%+2x—1)

(64x%° + 448x%* + 1184x%3 + 1784x2% + 2028x%! + 1948x%0 +
1080x12 +104x18 —180x17 +540x 10 +1156x1% +696x 14 +252x13 +-
238x12+188x!1 +502x104-806x" +-544x8 +263x7 +185x°+99x° +
33x*+13x34+-3x24+x—1) / (128x%+896x2* +2368x234-3568x22 +
3928x%! + 3064x20 + 176x17 — 2304x'8 — 2664x17 — 1580x16 —
352x15 —576x1% —1104x13 —760x'2 — 138x11 +686x1041238x7 +
869x8 + 382x7 4 210x° + 102x° + 27x* 4 12x3 + 3x? +2x — 1)

too large to display

20/

20

