Peaks, Valleys, and More 0000 0000 Peaks and Paths 000000000 00

On the distribution of peaks (and other statistics)

Lara Pudwell Valparaiso University faculty.valpo.edu/lpudwell

16th International Conference on Permutation Patterns Dartmouth College July 12, 2018

Introduction ●00	Peaks, Valleys, and More 0000 0000	Peaks and Paths 000000000 00	Other Directions
Ascents and Descents			

 $\operatorname{des}(\pi) = |\{i|\pi_i > \pi_{i+1}\}|$

Known:

• $|\{\pi \in \mathcal{S}_n | \operatorname{des}(\pi) = k\}| =$

Introduction			Other Directions
000	0000	00000000 00	
Ascents and Descents			

$$des(\pi) = |\{i|\pi_i > \pi_{i+1}\}|$$

Known:

•
$$|\{\pi \in S_n | \operatorname{des}(\pi) = k\}| = A(n, k)$$
 (Eulerian numbers).

n∖k	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	4	1					
4	1	11	11	1				
5	1	26	66	26	1			
6	1	57	302	302	57	1		
7	1	120	1191	2416	1191	120	1	
8	1	247	4293	15619	15619	4293	247	1

Table: A(n, k) for small values of n and k

Introduction			Other Directions
000	0000	00000000 00	
Ascents and Descents			

$$des(\pi) = |\{i|\pi_i > \pi_{i+1}\}|$$

Known:

•
$$|\{\pi \in S_n | \operatorname{des}(\pi) = k\}| = A(n, k)$$
 (Eulerian numbers).

Question:

• What is
$$|\{\pi \in S_n(\rho) | des(\pi) = k\}|$$
?
 $\rho \in S_m$

э

-≣->

・ロト ・回ト ・ 回ト ・

Introduction ●00	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00000000 00	Other Directions
Ascents and Descents			

$$des(\pi) = |\{i|\pi_i > \pi_{i+1}\}|$$

Known:

•
$$|\{\pi \in S_n | \operatorname{des}(\pi) = k\}| = A(n, k)$$
 (Eulerian numbers).

Question:

э

-≣->

・ロト ・回ト ・ 回ト ・

Introduction			Other Directions
000	0000	00000000 00	
Ascents and Descents			

$$des(\pi) = |\{i|\pi_i > \pi_{i+1}\}|$$

Known:

•
$$|\{\pi \in S_n | \operatorname{des}(\pi) = k\}| = A(n, k)$$
 (Eulerian numbers).

Question:

$$\operatorname{asc}(\pi) = |\{i|\pi_i < \pi_{i+1}\}| \text{ (ascents)} \\ \operatorname{des}(\pi) = |\{i|\pi_i > \pi_{i+1}\}| \text{ (descents)}$$

イロト イ団ト イヨト イヨト

Introduction			Other Directions
000	0000	00000000 00	
Ascents and Descents			

 $\left|\left\{\pi \in \mathcal{S}_n(\rho) | \operatorname{des}(\pi) = k\right\}\right| = \left|\left\{\pi \in \mathcal{S}_n(\rho) | \operatorname{asc}(\pi) = k\right\}\right|.$

Introduction			Other Directions
000	0000	00000000 00	
Ascents and Descents			

$$\left|\left\{\pi \in \mathcal{S}_n(\rho) | \operatorname{des}(\pi) = k\right\}\right| = \left|\left\{\pi \in \mathcal{S}_n(\rho) | \operatorname{asc}(\pi) = k\right\}\right|.$$

A001263: Narayana numbers $\frac{\binom{n-1}{k}\binom{n}{k}}{k+1}$ (Follows from bijection between $S_n(231)$ and Dyck paths)

Introduction ○●○	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00000000 00	Other Directions
Ascents and Descents			

$$|\{\pi \in \mathcal{S}_n(\rho)|\operatorname{des}(\pi) = k\}| = |\{\pi \in \mathcal{S}_n(\rho)|\operatorname{asc}(\pi) = k\}|.$$

A001263: Narayana numbers $\frac{\binom{n-1}{k}\binom{n}{k}}{k+1}$ (Follows from bijection between $S_n(231)$ and Dyck paths)

Introduction		Other Directions
Ascents and Descents		

$$|\{\pi \in \mathcal{S}_n(\rho)|\operatorname{des}(\pi) = k\}| = |\{\pi \in \mathcal{S}_n(\rho)|\operatorname{asc}(\pi) = k\}|.$$

Introduction		Other Directions
Ascents and Descents		

$$|\{\pi \in \mathcal{S}_n(\rho)|\operatorname{des}(\pi) = k\}| = |\{\pi \in \mathcal{S}_n(\rho)|\operatorname{asc}(\pi) = k\}|.$$

Introduction			Other Directions
000	0000 0000	00000000 00	
Ascents and Descents			

$$|\{\pi \in \mathcal{S}_n(\rho)|\operatorname{des}(\pi) = k\}| = |\{\pi \in \mathcal{S}_n(\rho)|\operatorname{asc}(\pi) = k\}|.$$

Introduction 000	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00000000 00	Other Directions
Ascents and Descents			

$$|\{\pi \in \mathcal{S}_n(\rho)|\operatorname{des}(\pi) = k\}| = |\{\pi \in \mathcal{S}_n(\rho)|\operatorname{asc}(\pi) = k\}|.$$

Introduction 000	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00000000 00	Other Directions
Ascents and Descents			

$$|\{\pi \in \mathcal{S}_n(\rho)|\operatorname{des}(\pi) = k\}| = |\{\pi \in \mathcal{S}_n(\rho)|\operatorname{asc}(\pi) = k\}|.$$

Introduction	
000	

Peaks, Valleys, and More

Peaks and Paths 00000000 00

Ascents and Descents

Ascents and Descents

 $|\{\pi \in S_n(321)| \operatorname{des}(\pi) = k\}| = |\{\pi \in S_n(123)| \operatorname{asc}(\pi) = k\}|$

On the distribution of peaks (and other statistics)

э

イロト イポト イヨト ・

Introduction 00●	Peaks, Valleys, and More 0000 0000	Peaks and Paths 000000000 00	C
Assesses and Desserves			

Ascents and Descents

$$|\{\pi \in S_n(321)| \operatorname{des}(\pi) = k\}| = |\{\pi \in S_n(123)| \operatorname{asc}(\pi) = k\}|$$

A091156:
$$G(t, z) = \sum_{\pi \in S_n(321)} t^{\text{des}(\pi)} z^n$$
 satisfies $z(1 - z + tz)G^2 - G + 1 = 0.$

M. Barnabei, F. Bonetti and M. Silimbani, The descent statistic on 123 avoiding permutations, *Sém. Lothar. Combin.* **68** (2010), B63a, 7 pp.

	Peaks, Valleys, and More		Other Directions
	0000	00000000	
More Statistics		00	

More Statistics

Question: What is $|\{\pi \in S_n(\rho)| \mathbf{st}(\pi) = k\}|$?

- $\operatorname{asc}(\pi) = |\{i|\pi_i < \pi_{i+1}\}|$ (ascents)
- $des(\pi) = |\{i|\pi_i > \pi_{i+1}\}|$ (descents)

	Peaks, Valleys, and More ●000	Peaks and Paths 000000000	Other Directions
More Statistics			

More Statistics

Question: What is $|\{\pi \in S_n(\rho) | \mathbf{st}(\pi) = k\}|$?

•
$$\operatorname{asc}(\pi) = |\{i | \pi_i < \pi_{i+1}\}|$$
 (ascents)

•
$$\operatorname{des}(\pi) = |\{i|\pi_i > \pi_{i+1}\}|$$
 (descents)

•
$$pk(\pi) = |\{i|\pi_i < \pi_{i+1} \text{ and } \pi_{i+1} > \pi_{i+2}\}|$$
 (peaks)

•
$$vl(\pi) = |\{i|\pi_i > \pi_{i+1} \text{ and } \pi_{i+1} < \pi_{i+2}\}|$$
 (valleys)

•
$$dasc(\pi) = |\{i|\pi_i < \pi_{i+1} < \pi_{i+2}\}|$$
 (double ascents)

•
$$ddes(\pi) = |\{i|\pi_i > \pi_{i+1} > \pi_{i+2}\}|$$
 (double descents)

	Peaks, Valleys, and More		Other Directions
	0000 0000	00000000 00	
More Statistics			

$\rho \setminus st$	pk	vl	dasc	ddes
231	A091894	A236406	A092107	A092107
312	A236406	A091894	A092107	A092107
321	A236406	A236406	new	(none)

æ

	Peaks, Valleys, and More		Other Directions
	0000		
	0000	00	
More Statistics			

 $S_n(312)$ vs. $S_n(321)$

≣⇒

	Peaks, Valleys, and More		Other Directions
	0000		
	0000	00	
More Statistics			

 $S_n(312)$ vs. $S_n(321)$

-

≪ ≣⇒

	Peaks, Valleys, and More 00●0 0000	Peaks and Paths 000000000 00	Other Directions
More Statistics			

 $\mathcal{S}_n(312)$ vs. $\mathcal{S}_n(321)$

	Peaks, Valleys, and More ○○○○ ○○○○	Peaks and Paths 000000000 00	Other Directions
More Statistics			

 $S_n(312)$ vs. $S_n(321)$

Peaks, Valleys, and More 000● 0000	Peaks and Paths 000000000 00	Other Dire

$\rho \setminus \text{st}$	pk	vl	dasc	ddes
231	A091894	A236406	A092107	A092107
312	A236406	A091894	A092107	A092107
321	A236406	A236406	new	(none)

Ξ.

< ロ > < 部 > < き > < き > ...

	Peaks, Valleys, and More 000● 0000	Peaks and Paths 000000000 00	Other Directions
More Statistics			

$\rho \setminus \mathrm{st}$	pk	vl	dasc	ddes
231	A091894	A236406	A092107	A092107
312	A236406	A091894	A092107	A092107
321	A236406	A236406	new	(none)

• A092107 : Dyck paths of semilength *n* having exactly *k* UUU's (triple rises), generating function given

Peaks, Valleys, and More 000● 0000	Peaks and Paths 000000000 00	Other Directions

$\rho \setminus \mathrm{st}$	pk	vl	dasc	ddes
231	A091894	A236406	A092107	A092107
312	A236406	A091894	A092107	A092107
321	A236406	A236406	new	(none)

- A092107 : Dyck paths of semilength *n* having exactly *k* UUU's (triple rises), generating function given
- A091894 : Dyck paths of semilength *n*, having *k* DDU's, generating function given

	Peaks, Valleys, and More 000● 0000	Peaks and Paths 000000000 00	Other Directions
More Statistics			

$\rho \setminus st$	pk	vl	dasc	ddes
231	A091894	A236406	A092107	A092107
312	A236406	A091894	A092107	A092107
321	A236406	A236406	new	(none)

- A092107 : Dyck paths of semilength *n* having exactly *k* UUU's (triple rises), generating function given
- A091894 : Dyck paths of semilength *n*, having *k* DDU's, generating function given
- A236406 : data from Andrew Baxter's Statter algorithm, no formula known

Peaks, Valleys, and More

Peaks and Paths 00000000 00 Other Directions

 $S_n(321)$ and Dyck path

$S_n(321)$ to (shifted) Dyck paths

æ

・ロト ・回ト ・ヨト ・ヨト

Peaks, Valleys, and More

Peaks and Paths 00000000 00 Other Directions

 $S_n(321)$ and Dyck path

$S_n(321)$ to (shifted) Dyck paths

æ

Peaks, Valleys, and More

Peaks and Paths 000000000 00 Other Directions

 $S_n(321)$ and Dyck path

$S_n(321)$ to (shifted) Dyck paths

On the distribution of peaks (and other statistics)

Lara Pudwell

э

イロト イヨト イヨト イヨト

Peaks, Valleys, and More $\bigcirc \bigcirc \bigcirc \bigcirc$

Peaks and Paths 000000000 00 Other Directions

 $S_n(321)$ and Dyck path

$S_n(321)$ to (shifted) Dyck paths

On the distribution of peaks (and other statistics)

Lara Pudwell

æ

Peaks, Valleys, and More $\circ \circ \circ \circ \circ$

Peaks and Paths 000000000 00 Other Directions

 $S_n(321)$ and Dyck path

$S_n(321)$ to (shifted) Dyck paths

On the distribution of peaks (and other statistics)

Lara Pudwell

æ

Peaks, Valleys, and More $\circ \circ \circ \circ \circ$

Peaks and Paths 000000000 00 Other Directions

 $S_n(321)$ and Dyck path

$S_n(321)$ to (shifted) Dyck paths

On the distribution of peaks (and other statistics)

Lara Pudwell

э

Peaks, Valleys, and More $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Peaks and Paths 000000000 00

 $S_n(321)$ and Dyck paths

$S_n(321)$ to (shifted) Dyck paths

617238459 peaks: 172, 384 134527698 peaks: 452, 276, 698

イロト イ団ト イヨト イヨト

Peaks, Valleys, and More $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Peaks and Paths 000000000 00

 $S_n(321)$ and Dyck paths

$S_n(321)$ to (shifted) Dyck paths

617238459 peaks: 172, 384

イロト イ団ト イヨト イヨト

э

Peaks, Valleys, and More $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Peaks and Paths 000000000 00

 $S_n(321)$ and Dyck paths

$S_n(321)$ to (shifted) Dyck paths

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{cccc} 617238459 & 134527698 \\ \text{peaks: } 172, \ 384 & \text{peaks: } 452, \ 276, \ 698 \\ \end{array}$ Peaks in π correspond to EEN factors in D_{π} before the last E.

Peaks, Valleys, and More $\circ \circ \circ \circ \circ$

Peaks and Paths 000000000 00 Other Directions

 $S_n(321)$ and Dyck path

$S_n(321)$ to (shifted) Dyck paths, rotated

《口》《聞》《臣》《臣》

Peaks, Valleys, and More $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Peaks and Paths 000000000 00 Other Directions

 $S_n(321)$ and Dyck paths

$S_n(321)$ to (shifted) Dyck paths, rotated

Let

- \mathcal{D}_n be the set of Dyck paths of semi-length n, $\mathcal{D} = \bigcup_{n \ge 0} \mathcal{D}_n$.
- st*(d) be the number of UUD (EEN) factors in Dyck path d that appear before the last U (E).

$$\sum_{d\in\mathcal{D}}q^{\mathrm{st}^*(d)}z^{|d|} = \sum_{\pi\in\mathrm{Av}(321)}q^{\mathrm{pk}(\pi)}z^{|\pi|}$$

	Peaks, Valleys, and More 0000 0000	Peaks and Paths •00000000 00	Other Direct
st tracks all UUD (EEN) factor	ors. st^* tracks UUD (EEN) factors before 1		

Goal

Determine
$$\sum_{d\in\mathcal{D}}q^{\mathrm{st}^*(d)}z^{|d|} = \sum_{\pi\in\mathrm{Av}(321)}q^{\mathrm{pk}(\pi)}z^{|\pi|}.$$

D_n is the set of Dyck paths of semi-length n and D = U_{n≥0} D_n.
st*(d) is the number of UUD (EEN) factors in Dyck path d that appear before the last U (E).

	Peaks, Valleys, and More 0000 0000	Peaks and Paths •00000000 00	Other Direc
$_{ m st}$ tracks all UUD (EEN) f	actors. st^* tracks UUD (EEN) factors b		

Goal

Determine
$$\sum_{d\in\mathcal{D}}q^{\mathrm{st}^*(d)}z^{|d|} = \sum_{\pi\in\mathrm{Av}(321)}q^{\mathrm{pk}(\pi)}z^{|\pi|}.$$

- \mathcal{D}_n is the set of Dyck paths of semi-length n and $\mathcal{D} = \bigcup_{n \ge 0} \mathcal{D}_n$.
- st*(d) is the number of UUD (EEN) factors in Dyck path d that appear before the last U (E).
- \mathcal{ID}_n is the set of indecomposable Dyck paths of semi-length n and $\mathcal{ID} = \bigcup_{n \ge 0} \mathcal{ID}_n$.
- st(d) is the total number of UUD (EEN) factors in Dyck path d.

		Peaks and Paths	Other Di
	0000	00000000 00	
st tracks all UUD (El	EN) factors. st^* tracks UUD (EEN) factor	rs before the last U (E).	

$$\begin{split} A &:= \sum_{d \in \mathcal{D}} q^{\operatorname{st}(d)} z^{|d|} \quad B := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}(d)} z^{|d|} \\ \mathbf{C} &:= \sum_{\mathbf{d} \in \mathcal{D}} q^{\operatorname{st}^*(\mathbf{d})} z^{|\mathbf{d}|} \quad D := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}^*(d)} z^{|d|} \end{split}$$

-> -< ≣ >

		Peaks and Paths	Other Di
	0000	0000000 00	
st tracks all UUD (E	EN) factors. st^* tracks UUD (EEN) facto	ors before the last U (E).	

$$\begin{split} A &:= \sum_{d \in \mathcal{D}} q^{\mathrm{st}(d)} z^{|d|} \quad B := \sum_{d \in \mathcal{ID}} q^{\mathrm{st}(d)} z^{|d|} \\ \mathbf{C} &:= \sum_{\mathbf{d} \in \mathcal{D}} \mathbf{q}^{\mathrm{st}^*(\mathbf{d})} \mathbf{z}^{|\mathbf{d}|} \quad D := \sum_{d \in \mathcal{ID}} q^{\mathrm{st}^*(d)} z^{|d|} \end{split}$$

• C = 1 + AD

		Peaks and Paths	Other Di
	0000	0000000 00	
st tracks all UUD (E	EN) factors. st^* tracks UUD (EEN) factor	ors before the last U (E).	

$$\begin{split} A &:= \sum_{d \in \mathcal{D}} q^{\mathrm{st}(d)} z^{|d|} \quad B := \sum_{d \in \mathcal{ID}} q^{\mathrm{st}(d)} z^{|d|} \\ \mathbf{C} &:= \sum_{\mathbf{d} \in \mathcal{D}} q^{\mathrm{st}^*(\mathbf{d})} z^{|\mathbf{d}|} \quad D := \sum_{d \in \mathcal{ID}} q^{\mathrm{st}^*(d)} z^{|d|} \end{split}$$

- C = 1 + AD
- A = 1 + AB

	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00●000000 00	Other Direct
st tracks all UUD (EE	N) factors. st^* tracks UUD (EEN) factors	before the last U (E).	

Descents on Dyck paths

617238459 peaks: 172, 384 descents: 61, 72, 84

134527698 peaks: 452, 276, 698 descents: 52, 76, 98

< ∃ >

	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00●000000 00	Other Direc
st tracks all UUD (EE	N) factors. st^* tracks UUD (EEN) factors	s before the last U (E).	

Descents on Dyck paths

617238459 peaks: 172, 384 descents: 61, 72, 84 134527698 peaks: 452, 276, 698 descents: 52, 76, 98

 $q^{\mathrm{des}(\pi)} z^{|\pi|+1}$

$$D := \sum_{d \in \mathcal{ID}} q^{\mathrm{st}^*(d)} z^{|d|} = \sum_{\pi \in A_V(321)}$$

		Peaks and Paths	Other
	0000	0000000 00	
st tracks all UUD (E	(EN) factors. st^* tracks UUD (EEN) factor	rs before the last U (E).	

$$A := \sum_{d \in \mathcal{D}} q^{\operatorname{st}(d)} z^{|d|} \qquad B := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}(d)} z^{|d|}$$
$$C := \sum_{d \in \mathcal{D}} q^{\operatorname{st}^*(d)} z^{|d|} \qquad D := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}^*(d)} z^{|d|}$$

C = 1 + *AD A* = 1 + *AB*

•
$$D = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|+1}$$

∃ ► < ∃ ►</p>

э

くロ と く 同 と く ヨ と 一

∃ ► < ∃ ►</p>

		Peaks and Paths	Other Direct
	0000	00000000 00	
st tracks all UUD (EE	N) factors. st * tracks UUD (EEN) factors I	pefore the last U (E).	

		Peaks and Paths	Other Direct
	0000	000000000	
st tracks all UUD (EE	N) factors. st^* tracks UUD (EEN) factors I	pefore the last U (E).	

< ∃ →

		Peaks and Paths	Other Directi
	0000	00000000 00	
st tracks all UUD (EE	N) factors. st^* tracks UUD (EEN) factors	before the last U (E).	

< ∃ →

	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00000000● 00	Otł
st tracks all UUD (E	EN) factors. st^* tracks UUD (EEN) facto	ors before the last U (E).	

• C = 1 + AD• A = 1 + AB• $D = \sum_{\pi \in Av(321)} q^{des(\pi)} z^{|\pi|+1}$

•
$$A = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|}$$

< 同 > < 三 > < 三 > -

	Peaks, Valleys, and More 0000 0000	Peaks and Paths 00000000● 00	Ot
st tracks all UUD (E	EN) factors. st^* tracks UUD (EEN) f	factors before the last U (E).	

• C = 1 + AD• A = 1 + AB• $D = \sum_{\pi \in Av(321)} q^{des(\pi)} z^{|\pi|+1}$

•
$$A = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|}$$

< 同 > < 三 > < 三 > -

•
$$D = zA$$

		Peaks and Paths	Ot
	0000	00000000	
st tracks all UUD (E	EN) factors. st^* tracks UUD (EEN)	factors before the last U (E).	

• C = 1 + AD• A = 1 + AB• $D = \sum_{\pi \in Av(321)} q^{des(\pi)} z^{|\pi|+1}$

•
$$A = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|}$$

•
$$D = zA$$

•
$$C = 1 + zA^2$$

	Peaks, Valleys, and More 0000 0000	Peaks and Paths ○○○○○○○○○ ●○	Other Directions
The upshot			

The upshot

Known (Barnabei, Bonetti and Silimbani, 2010)

•
$$\sum_{\pi \in Av(321)} q^{\operatorname{des}(\pi)} z^{|\pi|} = -\frac{-1 + \sqrt{-4z^2q + 4z^2 - 4z + 1}}{2z(zq - z + 1)}$$

•
$$\sum_{\pi \in Av(321)} q^{\operatorname{des}(\pi)} z^{|\pi|} = \sum_{d \in \mathcal{D}} q^{\operatorname{vl}(d) + tf(d)} z^{|d|}$$

•
$$\sum_{\pi \in Av(321)} v(d) \text{ is the number of DU factors and } tf(d) \text{ is the number of } the number of DU factors.}$$

vl(d) is the number of DU factors and tf(d) is the number of DDD factors of d.

	Peaks, Valleys, and More 0000 0000	Peaks and Paths ○○○○○○○○○ ●○	Other Directions
The upshot			

The upshot

Known (Barnabei, Bonetti and Silimbani, 2010)

•
$$\sum_{\pi \in Av(321)} q^{des(\pi)} z^{|\pi|} = -\frac{-1 + \sqrt{-4z^2q + 4z^2 - 4z + 1}}{2z(zq - z + 1)}$$

•
$$\sum_{\pi \in Av(321)} q^{des(\pi)} z^{|\pi|} = \sum_{d \in \mathcal{D}} q^{vl(d) + tf(d)} z^{|d|}$$

• $vl(d)$ is the number of DU factors and $tf(d)$ is the number of DDD factors of d .

New:

•
$$\sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{pk}(\pi)} z^{|\pi|} = 1 + z \left(-\frac{-1 + \sqrt{-4z^2 q + 4z^2 - 4z + 1}}{2z(zq - z + 1)} \right)^2$$

•
$$\sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|} = \sum_{d \in \mathcal{D}} q^{\operatorname{st}(d)} z^{|d|}$$

• $st(d)$ is the number of UUD factors of d .

On the distribution of peaks (and other statistics)

	Peaks, Valleys, and More 0000 0000	Peaks and Paths ○○○○○○○○ ○●	Other Directions
The upshot			

But wait! There's more ...

•
$$A := \sum_{d \in \mathcal{D}} q^{\operatorname{st}(d)} z^{|d|} = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|}$$

•
$$B := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}(d)} z^{|d|} = ???$$

•
$$C := \sum_{d \in D} q^{\operatorname{st}^*(d)} z^{|d|} = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{pk}(\pi)} z^{|\pi|}$$

• $D := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}^*(d)} z^{|d|} = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|+1}$

$\rho \setminus st$	pk	vl	dasc	ddes
231	A091894	A236406	A092107	A092107
312	A236406	A091894	A092107	A092107
321	A236406	A236406	new	(none)

イロト イ団ト イヨト イヨト

	Peaks, Valleys, and More 0000 0000	Peaks and Paths ○○○○○○○○ ○●	Other Directions
The upshot			

But wait! There's more ...

•
$$A := \sum_{d \in D} q^{\operatorname{st}(d)} z^{|d|} = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|}$$

• $B := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}(d)} z^{|d|} = z(1-q) + \sum_{\pi \in \operatorname{Av}(231)} q^{\operatorname{pk}(\pi)+1} z^{|\pi|+1}$
• $C := \sum_{d \in D} q^{\operatorname{st}^*(d)} z^{|d|} = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{pk}(\pi)} z^{|\pi|}$
• $D := \sum_{d \in \mathcal{ID}} q^{\operatorname{st}^*(d)} z^{|d|} = \sum_{\pi \in \operatorname{Av}(321)} q^{\operatorname{des}(\pi)} z^{|\pi|+1}$

$\rho \setminus \mathrm{st}$	pk	vl	dasc	ddes
231	A091894	A236406	A092107	A092107
312	A236406	A091894	A092107	A092107
321	A236406	A236406	new	(none)

イロト イ団ト イヨト イヨト

Peaks, Valleys, and More

Peaks and Paths 000000000 00

More Patterns?

left to right: Nicholas Lewandowski, Ryan Kulwicki, Jacob Roth*, Michael Bukata, L.P., Teresa Wheeland

Studied statistics over $S_n(\rho_1, \rho_2)$ with $\rho_1, \rho_2 \in S_3$.

On the distribution of peaks (and other statistics)

References

- M. Barnabei, F. Bonetti and M. Silimbani, The descent statistic on 123 avoiding permutations, *Sém. Lothar. Combin.* **68** (2010), B63a, 7 pp.
- A. M. Baxter, Refining enumeration schemes to count according to permutation statistics, *Electron. J. Combin.* **21.2** (2014), #P2.50, 27 pp.
- C. Krattenthaler, Permutations with restricted patterns and Dyck paths, *Adv. Appl. Math.* **27** (2001), 510–530.
- The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2018.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell email: Lara.Pudwell@valpo.edu