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Merges

Definition
Permutation π is a merge of permutations σ and τ if the elements of π
can be colored red and blue, so that the red elements are a copy of σ and
the blue ones of τ .

One possible merge of 132 and 321 is 624531.



Recognition problems

Definition
For two permutation classes C and D, let C � D be the class of
permutations obtained by merging a σ ∈ C with a τ ∈ D.

Definition
For a permutation class C, C-recognition is the decision problem to
determine whether a given permutation belongs to C.

Example: Av(k . . . 1)-recognition is the usual coloring problem.

Question
How hard is the (C � D)-recognition problem for various choices of C
and D.
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Generalized coloring of graphs

Definition
For a fixed k-tuple G1, . . . ,Gk of graph classes, a generalized coloring of a
graph is an assignment of colors 1, 2, . . . , k to its vertices so that the
vertices of color i induce a subgraph from Gi .
In particular, if all the Gi are equal to the class of edgeless graphs, this
notion reduces to the classical notion of k-coloring.

Theorem (Farrugia)
If all the Gi are hereditary and additive (i.e., closed under taking induced
subgraphs and forming disjoint unions) then the problem is NP-hard,
except the trivially polynomial case when k = 2 and both G1 and G2 are
equal to the class of edgeless graphs.
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Prior results

Facts
(C � D)-recognition is tractable, i.e. polynomially solvable, whenever

I C-recognition is tractable and D is finite,

I C = Av(1 . . . k) and D = Av(1 . . . l), and

I C = Av(1 . . . k) and D = Av(l . . . 1).

Observation
(C � D)-recognition is tractable, whenever C � D has a finite basis.

Theorem (Ekim et al.)
There is a polynomial algorithm for

I (L � Av(21))-recognition and

I (L � L)-recognition, where

L is the class of layered permutations and L is the class of co-layered
permutations.
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Online recognition motivation

Problem: Decide whether π of length n belongs to Av(12)� Av(21).

Definition
Let Sk be set of pairs (a, b) such that π1, . . . πk can be decomposed into

I a decreasing sequence with smallest (last) value a and

I an increasing sequence with largest (last) value b.

Moreover S0 = {(+∞,−∞)}.

Observation
π belongs to Av(12)� Av(21) if and only if Sn is not empty.

Algorithm: Incrementally compute S1, . . . ,Sn.
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Run of the algorithm on permutation 51324.



Nondeterministic point of view

Suppose we are trying to solve the same problem nondeterministically.

Let A be a nondeterministic algorithm that stores in memory only pair of
the last values in each sequence.

I A initializes its memory state to (+∞,−∞).

I For k = 1 . . . n
I A guesses whether πk belongs to increasing or decreasing sequence,

and
I updates the pair of last values or terminates unsuccessfully.
I A accepts π if there is valid pair in its memory after receiving πn.

Observation
There is an accepting computation of A on π if and only if π belongs to
Av(12)� Av(21).
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NLOL-recognition

We say that a nondeterministic algorithm A is a nondeterministic
logspace on-line recognizer of C if it recognizes C in the following setting:

I A receives an integer n, then

I A receives one-by-one a sequence of distinct values π1, . . . , πk from
the set [n], terminated by a special symbol EOF.

I Afterwards, A answers whether π1, . . . , πk is order-isomorphic to
some π′ ∈ C.

I During the computation A can read the input sequence only once
and access only O(log n) bits of memory.

Definition
A permutation class C is nondeterministically logspace on-line
recognizable, or NLOL-recognizable for short, if there is an NLOL
recognizer A of C.

Observation
For any permutation class NLOL-recognizable class C, the C-recognition
problem is tractable.
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Properties of NLOL-recognizable classes

Lemma
If C and D are NLOL-recognizable classes, then the following classes are
NLOL-recognizable as well:

(a) The classes C ∩ D and C ∪ D.

(b) The classes Cr and Cc , i.e. the classes of reverses and complements.

(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.

(d) The classes C ⊕ D and C 	 D, and more generally, any class of the
form Grid(M), where M is a matrix of classes whose entries all
belong to NLOL.

(e) The class C � D.

Corollary
For any sequence of classes C1, C2, . . . , Ck ∈ NLOL, the class
C1 � C2 � · · · � Ck is in NLOL, and therefore polynomially recognizable.
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2D-NLOL-recognizable classes

Definition
Let (x1, y1), (x2, y2), . . . , (xk , yk) be a sequence of distinct points in
general position. We say that the sequence is top-right monotone if for
every i ∈ [k] the point (xi , yi ) is to the right or above all the previous
points of the sequence.

Possible sequence: (1, 1), (4, 2), (2, 3), (5, 4), (3, 4)
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2D-NLOL-recognizable classes
We say that a nondeterministic algorithm A is a 2D-NLOL-recognizer of
C if it recognizes C in the following setting1:

I A receives an integer n, then

I A receives one-by-one a sequence of a top-right monotone sequence
of points in general position from [n]× [n] as their input, terminated
by a special symbol EOF.

I Afterwards, A answers whether the set of points corresponds to
some π ∈ C .

I During the computation A can read the input sequence only once
and access only O(log n) bits of memory.

Definition
A permutation class C is 2D-NLOL-recognizable if there is a 2D-NLOL
recognizer A of C.

Observation
If a permutation class C is 2D-NLOL-recognizable then it is
NLOL-recognizable.

1Omitting few ugly technical conditions.
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2D-NLOL-recognizable classes

Lemma
If C and D are 2D-NLOL-recognizable classes, then the following classes
are 2D-NLOL-recognizable as well:

(a) The classes C ∩ D and C ∪ D.

(b) The class C−1, which contains the inverses of the permutations of C.

(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.

(d) The classes C ⊕ D and C 	 D, and more generally, any class of the
form Grid(M), where M is a matrix of classes whose entries all
belong to 2D-NLOL.

(e) The class C � D.

Theorem
If C is a 2D-NLOL-recognizable class and D is any class of the set
{Av(2413, 3142),Av(213),Av(231),Av(132),Av(312)}, then C � D is
polynomially recognizable.
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Other results

Proposition
For a non-monotonic separable permutation σ, the class Av(σ)� Av(21)
has an infinite basis.

Theorem
For any simple permutation α of order at least 4, the
(Av(α)� Av(α))-recognition problem is NP-complete.

Proposition
The (Av(σ)� Av(21))-recognition problem is tractable whenever
σ = (1 . . . k)⊕ (l . . . 1)⊕ (1 . . .m) for k ≥ 0, l ≥ 2 and m ≥ 1.
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Summary

I There is a large set NLOL of permutation classes such that for any
C, D ∈ NLOL the (C � D)-recognition is tractable. Specific
examples include layered permutations, co-layered permutations,
merge of k increasing sequences, separable permutations with
constant depth of their separating tree etc.

I For slightly restricted set 2D-NLOL of permutation classes we can
recognize its merges with ”treelike” permutation classes that include
separable permutations and Av(213) (plus all its symmetries).

I The problem becomes hard for forbidden patterns that are simple
and of length at least 4.
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Open questions

Question
What is the complexity of (C � D)-recognition when C and D are any
two (possibly identical) classes from the set
{Av(2413, 3142),Av(213),Av(231),Av(132),Av(312)}?

Question
For which classes C is the (C � Av(21))-recognition polynomial?



Open questions

Question
What is the complexity of (C � D)-recognition when C and D are any
two (possibly identical) classes from the set
{Av(2413, 3142),Av(213),Av(231),Av(132),Av(312)}?

Question
For which classes C is the (C � Av(21))-recognition polynomial?



Open questions

Question
What is the complexity of (C � D)-recognition when C and D are any
two (possibly identical) classes from the set
{Av(2413, 3142),Av(213),Av(231),Av(132),Av(312)}?

Question
For which classes C is the (C � Av(21))-recognition polynomial?



Thank you!


