Enumeration of super-strong Wilf equivalence classes of permutations

Ioannis Michos

joint work with Christina Savvidou

Permutation Patterns 2018 Dartmouth College, USA

July 11, 2018

 \mathbb{P} : The set of positive integers.

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* . The set of all words with letters from \mathbb{P}

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

3 5 7 2 1 4 6 8 2 2 3 1

Embedding on index 1

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* . The set of all words with letters from \mathbb{P}

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of vwith the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

Embedding on index 1

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* . The set of all words with letters from \mathbb{P}

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of vwith the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

Embedding on index 1 Not an Embedding

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

Embedding on index 1 Not an Embedding

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

3 5 7 2 1 4 6 8 2 2 3 1 En 2 2 3 1

Embedding on index 1
Not an Embedding
Not an Embedding

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

3 5 7 <mark>2 1 4 6</mark> 8 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1

Embedding on index 1 Not an Embedding Not an Embedding

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

3	5	7	2	1	4	6	8	
2	2	3	1					Embedding on index 1
	2	2	3	1				Not an Embedding
		2	2	3	1			Not an Embedding
			2	2	3	1		Not an Embedding

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

3	5	7	2	1	4	6	8	
2	2	3	1					Embedding on index 1
	2	2	3	1				Not an Embedding
		2	2	3	1			Not an Embedding
			2	2	3	1		Not an Embedding
				2	2	3	1	

 \mathbb{P} : The set of positive integers.

 \mathbb{P}^* : The set of all words with letters from \mathbb{P} .

 S_n : The set of permutations of size n.

An **embedding** of a word u in a word v is a factor of v with the same length as u and with every letter greater than or equal to the corresponding letter of u.

Example

Embeddings of 2231 in 35721468:

3	5	7	2	1	4	6	8	
2	2	3	1					Embedding on index 1
	2	2	3	1				Not an Embedding
		2	2	3	1			Not an Embedding
			2	2	3	1		Not an Embedding
				2	2	3	1	Not an Embedding

• For a word $w = w_1 w_2 \dots w_n$, define

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

$$|35721468| = 8$$

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

$$|35721468| = 8$$

• norm: $||w|| = w_1 + w_2 + \cdots + w_n$

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

$$|35721468| = 8$$

• norm: $||w|| = w_1 + w_2 + \cdots + w_n$

$$||35721468|| = 36$$

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

$$|35721468| = 8$$

• norm: $||w|| = w_1 + w_2 + \cdots + w_n$

$$||35721468|| = 36$$

• weight: $wt(w) = t^{|w|} x^{||w||}$

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

$$|35721468| = 8$$

• norm: $||w|| = w_1 + w_2 + \cdots + w_n$

$$||35721468|| = 36$$

• weight: $wt(w) = t^{|w|} x^{||w||}$

$$wt(35721468) = t^8x^{36}$$

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

$$|35721468| = 8$$

- norm: $||w|| = w_1 + w_2 + \cdots + w_n$ ||35721468|| = 36
- weight: $wt(w) = t^{|w|}x^{||w||}$ $wt(35721468) = t^8x^{36}$
- **Generalized Factor Order**: Let $u, w \in \mathbb{P}^*$. Then $w \ge u$ if there is at least one embedding of u in w.

- For a word $w = w_1 w_2 \dots w_n$, define
 - length: |w| = n

$$|35721468| = 8$$

- norm: $||w|| = w_1 + w_2 + \cdots + w_n$ ||35721468|| = 36
- weight: $wt(w) = t^{|w|}x^{||w||}$ $wt(35721468) = t^8x^{36}$
- **Generalized Factor Order**: Let $u, w \in \mathbb{P}^*$. Then $w \ge u$ if there is at least one embedding of u in w.
- Weight generating function:

$$F(u;t,x)=\sum_{w\geq u}wt(w)$$

Set of embedding indices

 $\mathrm{Emb}(u,w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}$

```
\operatorname{Emb}(u, w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}
\operatorname{Emb}(2231, 35721468) = \{1\}
```

```
\text{Emb}(u, w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}
\text{Emb}(2231, 35721468) = \{1\}
\text{Emb}(312, 549186732) = \{
```

```
\text{Emb}(u, w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}
\text{Emb}(2231, 35721468) = \{1\}
\text{Emb}(312, \underline{5}49186732) = \{1, \}
```

```
\text{Emb}(u, w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}
\text{Emb}(2231, 35721468) = \{1\}
\text{Emb}(312, 549186732) = \{1, 3, \}
```

```
\text{Emb}(u, w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}
\text{Emb}(2231, 35721468) = \{1\}
\text{Emb}(312, 549186732) = \{1, 3, 5, \dots\}
```

```
\text{Emb}(u, w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}
\text{Emb}(2231, 35721468) = \{1\}
\text{Emb}(312, 549186732) = \{1, 3, 5, 6, \}
```

```
\text{Emb}(u, w) = \{j : j \text{ is an embedding index of } u \text{ in } w\}
\text{Emb}(2231, 35721468) = \{1\}
\text{Emb}(312, 549186732) = \{1, 3, 5, 6, 7\}
```

Set of embedding indices

 $\mathrm{Emb}(u,w)=\{j:j \text{ is an embedding index of } u \text{ in } w\}$

$$\mathrm{Emb}(2231, 35721468) = \{1\}$$

 $\mathrm{Emb}(312, 549186732) = \{1, 3, 5, 6, 7\}$

Embedding generating function

$$A_u(x,y,z) = \sum_{w \in \mathbb{P}^*} x^{|w|} y^{||w||} z^{|\operatorname{Emb}(u,w)|}$$

Wilf equivalence

$$u \sim v \Leftrightarrow F(u; t, x) = F(v; t, x)$$

Wilf equivalence

$$u \sim v \Leftrightarrow F(u; t, x) = F(v; t, x)$$

Strong Wilf equivalence

$$u \sim_s v \Leftrightarrow A_u(x, y, z) = A_v(x, y, z)$$

Wilf equivalence

$$u \sim v \Leftrightarrow F(u; t, x) = F(v; t, x)$$

Strong Wilf equivalence

$$u \sim_s v \Leftrightarrow A_u(x, y, z) = A_v(x, y, z)$$

Super-strong Wilf equivalence

 $u \sim_{ss} v \Leftrightarrow \exists$ a weight-preserving bijection $f : \mathbb{P}^* \to \mathbb{P}^*$ such that $\operatorname{Emb}(u, w) = \operatorname{Emb}(v, f(w)) \ \forall w \in \mathbb{P}^*$.

Wilf equivalence

$$u \sim v \Leftrightarrow F(u; t, x) = F(v; t, x)$$

Strong Wilf equivalence

$$u \sim_s v \Leftrightarrow A_u(x, y, z) = A_v(x, y, z)$$

Super-strong Wilf equivalence

 $u \sim_{ss} v \Leftrightarrow \exists$ a weight-preserving bijection $f : \mathbb{P}^* \to \mathbb{P}^*$ such that $\mathrm{Emb}(u, w) = \mathrm{Emb}(v, f(w)) \ \forall w \in \mathbb{P}^*$.

$$u \sim_{ss} v \Rightarrow u \sim_{s} v \Rightarrow u \sim v$$

Wilf equivalence

• Kitaev, Liese, Remmel, Sagan, *Rationality, irrationality, and Wilf equivalence in generalized factor order*, The Electronic Journal of Combinatorics **16** (2) #R22 (2009).

Wilf equivalence

- Kitaev, Liese, Remmel, Sagan, Rationality, irrationality, and Wilf equivalence in generalized factor order, The Electronic Journal of Combinatorics 16 (2) #R22 (2009).
- Pantone, Vatter, On the Rearrangement Conjecture for generalized factor order over P, FPSAC 2014. Discrete Math. Theor. Comput. Sci. Proc., Nancy (2014), 217-228.

Wilf equivalence

- Kitaev, Liese, Remmel, Sagan, Rationality, irrationality, and Wilf equivalence in generalized factor order, The Electronic Journal of Combinatorics 16 (2) #R22 (2009).
- Pantone, Vatter, On the Rearrangement Conjecture for generalized factor order over ₱, FPSAC 2014. Discrete Math. Theor. Comput. Sci. Proc., Nancy (2014), 217-228.
- Hadjiloucas, M., Savvidou, On super-strong Wilf equivalence classes of permutations, The Electronic Journal of Combinatorics, 25 (2) #P2.54 (2018).

Definition

Let $u \in S_n$ and $s = s_1 \cdots s_i \cdots s_n = u^{-1}$. Order the alphabet set of the suffix $s_i \cdots s_n$ of s from smallest to largest indices and define $\Delta_i(s)$ to be the vector of the corresponding *consecutive differences*. The sequence

$$p(s) = (\Delta_1(s), \Delta_2(s), \ldots, \Delta_{n-2}(s), \Delta_{n-1}(s))$$

has a pyramidal form and is called the pyramidal sequence of (consecutive) differences of $s \in S_n$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

$$\Delta_7(s)=(1)$$

$$egin{array}{ll} 6 < 7 & \Delta_7(s) = (1) \ 4 < 6 < 7 & \Delta_6(s) = (2,1) \end{array}$$

Let u = 21365874. Then $s = u^{-1} = 21385476$. The pyramidal sequence of differences for s is the following:

$$egin{array}{ll} 6 < 7 & \Delta_7(s) = (1) \ 4 < 6 < 7 & \Delta_6(s) = (2,1) \ 4 < 5 < 6 < 7 & \Delta_5(s) = (1,1,1) \end{array}$$

8 / 27

Let u = 21365874. Then $s = u^{-1} = 21385476$. The pyramidal sequence of differences for s is the following:

6 < 7	$\Delta_7(s)=(1)$
4 < 6 < 7	$\Delta_6(s)=(2,1)$
4 < 5 < 6 < 7	$\Delta_5(s)=(1,1,1)$
4 < 5 < 6 < 7 < 8	$\Delta_4(s) = (1, 1, 1, 1)$

8 / 27

6 < 7	$\Delta_7(s)=(1)$
4 < 6 < 7	$\Delta_6(s)=(2,1)$
4 < 5 < 6 < 7	$\Delta_5(s) = (1, 1, 1)$
4 < 5 < 6 < 7 < 8	$\Delta_4(s) = (1, 1, 1, 1)$
3 < 4 < 5 < 6 < 7 < 8	$\Delta_3(s) = (1, 1, 1, 1, 1)$

6 < 7	$\Delta_7(s)=(1)$
4 < 6 < 7	$\Delta_6(s)=(2,1)$
4 < 5 < 6 < 7	$\Delta_5(s)=(1,1,1)$
4 < 5 < 6 < 7 < 8	$\Delta_4(s)=(1,1,1,1)$
3 < 4 < 5 < 6 < 7 < 8	$\Delta_3(s) = (1,1,1,1,1)$
1 < 3 < 4 < 5 < 6 < 7 < 8	$\Delta_2(s) = (2, 1, 1, 1, 1, 1)$

6 < 7	$\Delta_7(s)=(1)$
4 < 6 < 7	$\Delta_6(s)=(2,1)$
4 < 5 < 6 < 7	$\Delta_5(s)=(1,1,1)$
4 < 5 < 6 < 7 < 8	$\Delta_4(s) = (1,1,1,1)$
3 < 4 < 5 < 6 < 7 < 8	$\Delta_3(s) = (1, 1, 1, 1, 1)$
1 < 3 < 4 < 5 < 6 < 7 < 8	$\Delta_2(s) = (2, 1, 1, 1, 1, 1)$
1 < 2 < 3 < 4 < 5 < 6 < 7 < 8	$\Delta_1(s) = (1, 1, 1, 1, 1, 1, 1)$

Let u = 21365874. Then $s = u^{-1} = 21385476$. The pyramidal sequence of differences for s is the following:

$$\begin{array}{lll} 6 < 7 & \Delta_7(s) = (1) \\ 4 < 6 < 7 & \Delta_6(s) = (2,1) \\ 4 < 5 < 6 < 7 & \Delta_5(s) = (1,1,1) \\ 4 < 5 < 6 < 7 < 8 & \Delta_4(s) = (1,1,1,1) \\ 3 < 4 < 5 < 6 < 7 < 8 & \Delta_3(s) = (1,1,1,1,1) \\ 1 < 3 < 4 < 5 < 6 < 7 < 8 & \Delta_2(s) = (2,1,1,1,1,1) \\ 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 & \Delta_2(s) = (1,1,1,1,1,1) \end{array}$$

Theorem

Let
$$u, v \in S_n$$
 and $s = u^{-1}, t = v^{-1}$. Then

$$u \sim_{ss} v \Leftrightarrow p(s) = p(t).$$

Super-strong Wilf equivalence classes

Pyramidal sequences of differences

Super-strong Wilf equivalence classes

Pyramidal sequences of differences

Construction of a pyramidal sequence of differences:

Construction of a pyramidal sequence of differences:

Pyramidal sequences of differences

Construction of a pyramidal sequence of differences:

② If $\Delta_i = (d_1, d_2, \dots, d_{n-i-1}, d_{n-i})$, then:

$$\Delta_{i+1} = \begin{cases} (d_1, \dots, d_{k-1}, d_k + d_{k+1}, d_{k+2}, \dots, d_{n-i}), & \mathsf{A} & \mathsf{o} \\ (d_1 d_2, \dots, d_{n-i-1}, d_{n-i}), & \mathsf{B} & \mathsf{or} \\ (d_1, d_2, \dots, d_{n-i-1}, d_{n-i}). & \mathsf{C} \end{cases}$$

Construction of a pyramidal sequence of differences:

② If $\Delta_i = (d_1, d_2, \dots, d_{n-i-1}, d_{n-i})$, then:

$$\Delta_{i+1} = \begin{cases} (d_1, \dots, d_{k-1}, \frac{d_k}{d_k} + \frac{d_{k+1}}{d_{k+1}}, d_{k+2}, \dots, d_{n-i}), & \mathsf{A} & \text{or} \\ (\cancel{d_1} \ d_2, \dots, d_{n-i-1}, d_{n-i}), & \mathsf{B} & \text{or} \\ (d_1, d_2, \dots, d_{n-i-1} \ d_{n-i}). & \mathsf{C} \end{cases}$$

Note that if $\Delta_i = (\underbrace{d, d, \dots, d}_{n-i})$, options B and C coincide.

Construction of a pyramidal sequence of differences:

② If $\Delta_i = (d_1, d_2, \dots, d_{n-i-1}, d_{n-i})$, then:

$$\Delta_{i+1} = \begin{cases} (d_1, \dots, d_{k-1}, \frac{d_k}{d_k} + \frac{d_{k+1}}{d_{k+1}}, d_{k+2}, \dots, d_{n-i}), & \mathsf{A} & \text{or} \\ (\cancel{d_1} \ d_2, \dots, d_{n-i-1}, d_{n-i}), & \mathsf{B} & \text{or} \\ (d_1, d_2, \dots, d_{n-i-1} \ d_{n-i}). & \mathsf{C} \end{cases}$$

Note that if $\Delta_i = (\underline{d, d, \dots, d})$, options B and C coincide.

Let Π_n denote the set of all pyramidal sequences of the above form,

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each.

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a removal of a wall.

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a **removal of a wall**. If this wall is internal, we get Case A.

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a **removal of a wall**. If this wall is internal, we get Case A. If it is a left external (resp., a right external) one, we get Case B (resp., Case C).

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a **removal of a wall**. If this wall is internal, we get Case A. If it is a left external (resp., a right external) one, we get Case B (resp., Case C).

Example

$$\Delta_1 = ig(1,1,1,1,1ig) \longrightarrow ig|ullet ig|ullet ig|ullet ig|ullet ig|ullet ig|ullet$$

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a **removal of a wall**. If this wall is internal, we get Case A. If it is a left external (resp., a right external) one, we get Case B (resp., Case C).

Example

$$egin{array}{ccccc} \Delta_1 = (1,1,1,1,1) & \longrightarrow & |ullet|ullet|ullet|ullet|ullet|ullet|ullet| ullet|ullet| ullet|u$$

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a **removal of a wall**. If this wall is internal, we get Case A. If it is a left external (resp., a right external) one, we get Case B (resp., Case C).

Example

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a **removal of a wall**. If this wall is internal, we get Case A. If it is a left external (resp., a right external) one, we get Case B (resp., Case C).

Example

We view Δ_1 as a configuration of **n** walls which define $\mathbf{n} - \mathbf{1}$ chambers with one ball in each. The transition from Δ_i to Δ_{i+1} is realized by a **removal of a wall**. If this wall is internal, we get Case A. If it is a left external (resp., a right external) one, we get Case B (resp., Case C).

Example

For a fixed $i \in [n-2]$ a trapezoidal sequence of consecutive differences of height i is a sequence of the i+1 initial parts of a given pyramidal sequence such that $\Delta_{i+1} = (d, d, \ldots, d)$ and for each $j \in [2, i)$, $\Delta_j \neq (e, e, \ldots, e)$ for $e \in \mathbb{P}$. Denote the set of all such trapezoidal sequences by $\Delta_{i,n}$.

For a fixed $i \in [n-2]$ a trapezoidal sequence of consecutive differences of height i is a sequence of the i+1 initial parts of a given pyramidal sequence such that $\Delta_{i+1} = (d, d, \ldots, d)$ and for each $j \in [2, i)$, $\Delta_j \neq (e, e, \ldots, e)$ for $e \in \mathbb{P}$. Denote the set of all such trapezoidal sequences by $\Delta_{i,n}$.

Example

$$\Delta_8 = (4)$$
 $\Delta_7 = (4, 2)$
 $\Delta_6 = (2, 2, 2)$
 $\Delta_5 = (1, 2, 2, 2)$
 $\Delta_4 = (1, 2, 2, 2, 1)$
 $\Delta_3 = (1, 2, 1, 1, 2, 1)$
 $\Delta_2 = (1, 1, 1, 1, 1, 2, 1)$
 $\Delta_1 = (1, 1, 1, 1, 1, 1, 1, 1)$

For a fixed $i \in [n-2]$ a trapezoidal sequence of consecutive differences of height i is a sequence of the i+1 initial parts of a given pyramidal sequence such that $\Delta_{i+1} = (d, d, \ldots, d)$ and for each $j \in [2, i)$, $\Delta_j \neq (e, e, \ldots, e)$ for $e \in \mathbb{P}$. Denote the set of all such trapezoidal sequences by $\Delta_{i,n}$.

Example

$$\Delta_8 = (4)$$

$$\Delta_7 = (4, 2)$$

$$\Delta_6 = (2, 2, 2)$$

$$\Delta_5 = (1, 2, 2, 2)$$

$$\Delta_4 = (1, 2, 2, 2, 1)$$

$$\Delta_3 = (1, 2, 1, 1, 2, 1)$$

$$\Delta_2 = (1, 1, 1, 1, 1, 2, 1)$$

$$\Delta_1 = (1, 1, 1, 1, 1, 1, 1, 1)$$

For a fixed $i \in [n-2]$ a trapezoidal sequence of consecutive differences of height i is a sequence of the i+1 initial parts of a given pyramidal sequence such that $\Delta_{i+1}=(d,d,\ldots,d)$ and for each $j\in [2,i),\ \Delta_j\neq (e,e,\ldots,e)$ for $e\in \mathbb{P}$. Denote the set of all such trapezoidal sequences by $\Delta_{i,n}$.

Example

Let A_n be the set of non-interval permutations, i.e., permutations of size $n \ge 2$ such that any proper prefix of length $l \ge 2$ is not, up to order, equal to an interval. Set $a_n = |A_n|$.

Let A_n be the set of non-interval permutations, i.e., permutations of size $n \ge 2$ such that any proper prefix of length $l \ge 2$ is not, up to order, equal to an interval. Set $a_n = |A_n|$.

$$(a_n)_{n\geq 2}=2,2,8,44,296,2312,20384,\ldots$$

Let A_n be the set of non-interval permutations, i.e., permutations of size $n \ge 2$ such that any proper prefix of length $l \ge 2$ is not, up to order, equal to an interval. Set $a_n = |A_n|$.

$$(a_n)_{n\geq 2} = 2, 2, 8, 44, 296, 2312, 20384, \dots$$

 $(b_n)_{n\geq 1} = 1, -2, -2, -8, -44, -296, -2312, -20384, \dots$

Let A_n be the set of non-interval permutations, i.e., permutations of size $n \ge 2$ such that any proper prefix of length $l \ge 2$ is not, up to order, equal to an interval. Set $a_n = |A_n|$.

$$(a_n)_{n\geq 2} = 2, 2, 8, 44, 296, 2312, 20384, \dots$$

 $(b_n)_{n\geq 1} = 1, -2, -2, -8, -44, -296, -2312, -20384, \dots$

This is $(\underline{A077607})$ in OEIS and is the convoluntory inverse of the factorial sequence, i.e., $(\sum_{k\geq 0} b_{k+1}t^k) \cdot (\sum_{k\geq 0} (k+1)!t^k) = 1$.

Non-interval permutations

Let A_n be the set of non-interval permutations, i.e., permutations of size $n \ge 2$ such that any proper prefix of length $l \ge 2$ is not, up to order, equal to an interval. Set $a_n = |A_n|$.

$$(a_n)_{n\geq 2} = 2, 2, 8, 44, 296, 2312, 20384, \dots$$

 $(b_n)_{n\geq 1} = 1, -2, -2, -8, -44, -296, -2312, -20384, \dots$

This is $(\underline{A077607})$ in OEIS and is the convoluntory inverse of the factorial sequence, i.e., $(\sum_{k>0} b_{k+1}t^k) \cdot (\sum_{k>0} (k+1)!t^k) = 1$.

$$\sum_{k=1}^{i} a_{k+1} \cdot (i-k+1)! = (i+1)!.$$

Prefixes of generalized non-interval permutations

A word of length *I* (resp., a set of cardinality *I*) is periodic if its vector of consecutive differences is equal to

$$(\underbrace{d,d,\ldots,d}_{l-1}).$$

Prefixes of generalized non-interval permutations

A word of length *I* (resp., a set of cardinality *I*) is periodic if its vector of consecutive differences is equal to

$$(\underbrace{d,d,\ldots,d}_{l-1}).$$

Definition

Let $\mathcal{D}_{i,n}$ be the set of all words $u = u_1 u_2 \dots u_i$ of length i that appear as a non-empty prefix of a permutation w of size n whose remaining (n-i)—suffix is periodic and for all j < i the set $[n] \setminus \{u_1, u_2, \dots, u_j\}$ is not periodic.

Prefixes of generalized non-interval permutations

A word of length *I* (resp., a set of cardinality *I*) is periodic if its vector of consecutive differences is equal to

$$(\underbrace{d,d,\ldots,d}_{l-1}).$$

Definition

Let $\mathcal{D}_{i,n}$ be the set of all words $u = u_1 u_2 \dots u_i$ of length i that appear as a non-empty prefix of a permutation w of size n whose remaining (n-i)—suffix is periodic and for all j < i the set $[n] \setminus \{u_1, u_2, \dots, u_j\}$ is not periodic.

Set
$$d_{i,n} = |\mathcal{D}_{i,n}|$$
.

(□ ► 4를 ► 4를 ► 4를 ► 9Q@

Example

The word 24 lies in $\mathcal{D}_{2,5}$ since it is a prefix of the permutation 24135 and for the proper non-empty prefix 2 of 24 the remaining letters 1, 3, 4 and 5 can not constitute a periodic word.

14 / 27

$|\mathcal{D}_{i,n}\longleftrightarrow\Delta_{i,n}|$

Proposition

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\Delta_1 = (1,1,1,1,1,1,1,1)$$

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\Delta_1 = (1, 1, 1, 1, 1, 1, 1, 1) \quad \rightarrow \quad |_1 \bullet |_2 \bullet |_3 \bullet |_4 \bullet |_5 \bullet |_6 \bullet |_7 \bullet |_8 \bullet |_9$$

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

Example

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

$$\mathcal{D}_{i,n} \longleftrightarrow \Delta_{i,n}$$

There is a bijection between the sets $\mathcal{D}_{i,n}$ and $\Delta_{i,n}$.

Super-strong Wilf equivalence classes

Theorem

Let s_n be the number of distinct super-strong Wilf equivalence classes of S_n . Then

$$s_n = s_{n-1} + \sum_{i=2}^{n-2} d_{i,n} \cdot s_{n-i}.$$

Super-strong Wilf equivalence classes

Theorem

Let s_n be the number of distinct super-strong Wilf equivalence classes of S_n . Then

$$s_n = s_{n-1} + \sum_{i=2}^{n-2} d_{i,n} \cdot s_{n-i}.$$

(1, 1, 1, 1)

Super-strong Wilf equivalence classes with 2^{j} elements

Let $s_{j,n}$ be the number of super-strong Wilf equivalence classes of order 2^j in S_n .

Super-strong Wilf equivalence classes with 2^{j} elements

Let $s_{j,n}$ be the number of super-strong Wilf equivalence classes of order 2^j in S_n .

Theorem

$$s_{j,n} = s_{j-1,n-1} + \sum_{k=2}^{n-j-1} d_{k,n} \cdot s_{j,n-k}.$$

Enumeration of $\mathcal{D}_{i,n}$

Let $q_{l,m}$ and $r_{l,m}$ be the unique quotient and remainder, respectively, of the Euclidean division of an arbitrary integer l with m.

19 / 27

Enumeration of $\mathcal{D}_{i,n}$

Let $q_{l,m}$ and $r_{l,m}$ be the unique quotient and remainder, respectively, of the Euclidean division of an arbitrary integer l with m.

Theorem

Let
$$n \ge 4$$
. For $i \in [n-2]$ and $m = n-i-1$, we have
$$\sum_{i=1}^{n} \frac{q_{n-k,m}}{2} \cdot (r_{n-k,m}+i-k+1) \cdot \frac{d_{k,n}}{2} \cdot (i-k)! = \frac{q_{n,m}}{2} \cdot (r_{n,m}+i+1) \cdot i!.$$

Enumeration of $\mathcal{D}_{i,n}$

Let $q_{l,m}$ and $r_{l,m}$ be the unique quotient and remainder, respectively, of the Euclidean division of an arbitrary integer l with m.

Theorem

Let
$$n \ge 4$$
. For $i \in [n-2]$ and $m = n-i-1$, we have
$$\sum_{k=1}^{i} \frac{q_{n-k,m}}{2} \cdot (r_{n-k,m}+i-k+1) \cdot \frac{d_{k,n}}{d_{k,n}} \cdot (i-k)! = \frac{q_{n,m}}{2} \cdot (r_{n,m}+i+1) \cdot i!.$$

For
$$i < \lfloor n/2 \rfloor$$
, we obtain $\sum_{k=1}^{i} d_{k,n} \cdot (i-k+1)! = (i+1)!$.

Enumeration of $\mathcal{D}_{i,n}$

Let $q_{l,m}$ and $r_{l,m}$ be the unique quotient and remainder, respectively, of the Euclidean division of an arbitrary integer l with m.

Theorem

Let
$$n \ge 4$$
. For $i \in [n-2]$ and $m = n-i-1$, we have
$$\sum_{k=1}^{i} \frac{q_{n-k,m}}{2} \cdot (r_{n-k,m}+i-k+1) \cdot d_{k,n} \cdot (i-k)! = \frac{q_{n,m}}{2} \cdot (r_{n,m}+i+1) \cdot i!.$$

For
$$i < \lfloor n/2 \rfloor$$
, we obtain $\sum_{k=1}^{r} d_{k,n} \cdot (i-k+1)! = (i+1)!$.

Proposition

For
$$k < \lfloor \frac{n}{2} \rfloor$$
,

$$\mathcal{A}_{k+1} \longleftrightarrow \mathcal{D}_{k,n}$$
.

List of super-strong Wilf equivalence classes

Let red(v) be the reduced form of v, and set

$$\mathcal{E}_{i,n} = \begin{cases} \{1\}, & i = 1 \\ \mathcal{D}_{i,n}, & i \in [2, n-2]. \end{cases}$$

20 / 27

List of super-strong Wilf equivalence classes

Let red(v) be the reduced form of v, and set

$$\mathcal{E}_{i,n} = \begin{cases} \{1\}, & i = 1 \\ \mathcal{D}_{i,n}, & i \in [2, n-2]. \end{cases}$$

Set

$$\mathcal{R}_n = \{ {\color{red} u \cdot v} \ : \ u \in \mathcal{E}_{i,n}; \ \textit{red}(v) \in \mathcal{R}_{n-i}; \ i \in [n-2] \}.$$

List of super-strong Wilf equivalence classes

Let red(v) be the reduced form of v, and set

$$\mathcal{E}_{i,n} = \begin{cases} \{1\}, & i = 1 \\ \mathcal{D}_{i,n}, & i \in [2, n-2]. \end{cases}$$

Set

$$\mathcal{R}_n = \{ \underbrace{u \cdot v} : u \in \mathcal{E}_{i,n}; red(v) \in \mathcal{R}_{n-i}; i \in [n-2] \}.$$

Theorem

A list of super-strong Wilf equivalence class representatives in S_n is given by the set

$$C_n = \{ \mathbf{w}^{-1} : \mathbf{w} \in \mathcal{R}_n \}.$$

J. Fidler, D. Glasscock, B. Miceli, J. Pantone, and M. Xu, *Shift equivalence in the generalized factor order*, Arch. Math. **110** (2018), 539-547.

- J. Fidler, D. Glasscock, B. Miceli, J. Pantone, and M. Xu, *Shift equivalence in the generalized factor order*, Arch. Math. **110** (2018), 539-547.
 - The **skyline diagram** of a word $u = u_1 u_2 \dots u_n \in \mathbb{P}^*$ is the geometric figure formed by adjoining n columns of squares such that the i-th column is made up of u_i squares.

- J. Fidler, D. Glasscock, B. Miceli, J. Pantone, and M. Xu, *Shift equivalence in the generalized factor order*, Arch. Math. **110** (2018), 539-547.
 - The **skyline diagram** of a word $u = u_1 u_2 \dots u_n \in \mathbb{P}^*$ is the geometric figure formed by adjoining n columns of squares such that the i-th column is made up of u_i squares.
 - A rigid shift of a word u is any word v that can be formed by cutting the skyline diagram of u at some height h and rigidly moving together all blocks above the cut line in such a way that each moved column comes to rest on a column of height h.

- J. Fidler, D. Glasscock, B. Miceli, J. Pantone, and M. Xu, *Shift equivalence in the generalized factor order*, Arch. Math. **110** (2018), 539-547.
 - The **skyline diagram** of a word $u = u_1 u_2 \dots u_n \in \mathbb{P}^*$ is the geometric figure formed by adjoining n columns of squares such that the i-th column is made up of u_i squares.
 - A rigid shift of a word u is any word v that can be formed by cutting the skyline diagram of u at some height h and rigidly moving together all blocks above the cut line in such a way that each moved column comes to rest on a column of height h.
 - Two words u and v are shift equivalent if v can be obtained by starting with u and performing any sequence of reversals and rigid shifts.

Definition

Two permutations are **strongly shift equivalent** if one can be obtained from the other by performing any sequence of rigid shifts.

Enumeration of Shift Equivalence Classes

Theorem

Let $u, v \in S_n$. Then u is strongly shift equivalent to v if and only if $u \sim_{ss} v$.

Enumeration of Shift Equivalence Classes

Theorem

Let $u, v \in S_n$. Then u is strongly shift equivalent to v if and only if $u \sim_{ss} v$.

$$\Delta_{i+1} = (d,d,\ldots,d)$$
 \longleftrightarrow rigid shift of height i by d places $\Delta_i = (d,d,\ldots,d)$

Enumeration of Shift Equivalence Classes

Theorem

Let $u, v \in S_n$. Then u is strongly shift equivalent to v if and only if $u \sim_{ss} v$.

Corollary

Let sh_n be the number of shift equivalence classes in S_n . For $n \geq 3$, we have

$$sh_n=2+\frac{s_n-2}{2}.$$

The numbers $d_{i,n}$ and s_n

i∖n	3	4	5	6	7	8	9	10	11	12
1	3	2	2	2	2	2	2	2	2	2
2		6	4	2	2	2	2	2	2	2
3			24	16	14	8	8	8	8	8
4				168	100	80	68	44	44	44
5					1,212	712	500	488	416	296
6						10,824	6,376	4,664	3,704	3,512
7							103,992	58,336	43,592	33,152
8								1,114,944	630,544	444,992
9									12,907,824	7,167,802
10										162,773,970

Table 1: The numbers $d_{i,n}$ for $1 \le i \le 10$ and $3 \le n \le 12$

The numbers $d_{i,n}$ and s_n

i∖n	3	4	5	6	7	8	9	10	11	12
1	3	2	2	2	2	2	2	2	2	2
2		6	4	2	2	2	2	2	2	2
3			24	16	14	8	8	8	8	8
4				168	100	80	68	44	44	44
5					1,212	712	500	488	416	296
6						10,824	6,376	4,664	3,704	3,512
7							103,992	58,336	43,592	33,152
8								1,114,944	630,544	444,992
9									12,907,824	7,167,802
10										162,773,970

Table 1: The numbers $d_{i,n}$ for $1 \le i \le 10$ and $3 \le n \le 12$

n	1	2	3	4	5	6	7	8	9	10	11	12
Sn	1	1	2	8	40	256	1,860	15,580	144,812	1,490,564	16,758,972	205,029,338

Table 2: The numbers s_n for $1 \le n \le 12$

The numbers $d_{i,n}$ and s_n

i∖n	3	4	5	6	7	8	9	10	11	12
1	3	2	2	2	2	2	2	2	2	2
2		6	4	2	2	2	2	2	2	2
3			24	16	14	8	8	8	8	8
4				168	100	80	68	44	44	44
5					1,212	712	500	488	416	296
6						10,824	6,376	4,664	3,704	3,512
7							103,992	58,336	43,592	33,152
8								1,114,944	630,544	444,992
9									12,907,824	7,167,802
10										162,773,970

Table 1: The numbers $d_{i,n}$ for $1 \le i \le 10$ and $3 \le n \le 12$

n	1	2	3	4	5	6	7	8	9	10	11	12
sn	1	1	2	8	40	256	1,860	15,580	144,812	1,490,564	16,758,972	205,029,338

Table 2: The numbers s_n for $1 \leq n \leq 12$

n	1	2	3	4	5	6	7	8	9	10	11	12
shn	1	1	2	5	21	129	931	7,791	72,407	745,283	8,379,487	102,514,670

Table 3: The numbers sh_n for $1 \leq n \leq 12$

 M. and Savvidou, Enumeration of super-strong Wilf equivalence classes of permutations, arXiv:1803.08818 [math.CO]

26 / 27

 M. and Savvidou, Enumeration of super-strong Wilf equivalence classes of permutations, arXiv:1803.08818 [math.CO]

Further Research

• Generating functions for $d_{i,n}$, s_n , and sh_n .

 M. and Savvidou, Enumeration of super-strong Wilf equivalence classes of permutations, arXiv:1803.08818 [math.CO]

Further Research

- Generating functions for $d_{i,n}$, s_n , and sh_n .
- Analogous results connecting super strong Wilf equivalence with strong Wilf equivalence, Wilf equivalence and other types of such equivalences.

Thank you!