
Stack sorting with increasing and decreasing stacks

Stack sorting with increasing and decreasing
stacks

G. Cerbai, L. Ferrari

Dipartimento di Matematica e Informatica “U. Dini”, Universitá degli Studi di Firenze,

Viale Morgagni 65, 50134 Firenze, Italy
giuliocerbai14@gmail.com,luca.ferrari@unifi.it

Permutation Patterns 2018, Dartmouth College, 9-13 July 2018.

Stack sorting with increasing and decreasing stacks

Preliminaries

Stack sorting (and relatives...)

General formulation:

INPUT - a permutation π;

MACHINE - a network of devices (may be stacks, queues, etc...), connected in
series or in parallel (or in some more fancy way...);

OUTPUT - another permutation f (π), which is hopefully the identity, otherwise
somehow ”closer” to the identity than the original permutation π.

Stack sorting with increasing and decreasing stacks

Preliminaries

Stack sorting (and relatives...)

General formulation:

INPUT - a permutation π;

MACHINE - a network of devices (may be stacks, queues, etc...), connected in
series or in parallel (or in some more fancy way...);

OUTPUT - another permutation f (π), which is hopefully the identity, otherwise
somehow ”closer” to the identity than the original permutation π.

Stack sorting with increasing and decreasing stacks

Preliminaries

Stack sorting (and relatives...)

General formulation:

INPUT - a permutation π;

MACHINE - a network of devices (may be stacks, queues, etc...), connected in
series or in parallel (or in some more fancy way...);

OUTPUT - another permutation f (π), which is hopefully the identity, otherwise
somehow ”closer” to the identity than the original permutation π.

Stack sorting with increasing and decreasing stacks

Preliminaries

Typical questions

◮ Characterize the permutations that can be sorted by a given network.

◮ Enumerate sortable permutations with respect to their length.

◮ If the network is too complex, find a specific algorithm that sorts
“many” input permutations and characterize such permutations.

Stack sorting with increasing and decreasing stacks

Preliminaries

Typical questions

◮ Characterize the permutations that can be sorted by a given network.

◮ Enumerate sortable permutations with respect to their length.

◮ If the network is too complex, find a specific algorithm that sorts
“many” input permutations and characterize such permutations.

Stack sorting with increasing and decreasing stacks

Preliminaries

Typical questions

◮ Characterize the permutations that can be sorted by a given network.

◮ Enumerate sortable permutations with respect to their length.

◮ If the network is too complex, find a specific algorithm that sorts
“many” input permutations and characterize such permutations.

Stack sorting with increasing and decreasing stacks

Preliminaries

Stack sorting and patterns

(Meta)Theorem
The set of permutations which can be sorted by a given network is a
permutation class.

This is no longer true if we impose restrictions on the procedure, i.e. if
we choose a specific algorithm to be used for the given network (e.g.,
West-2-stack sortable permutations).

Stack sorting with increasing and decreasing stacks

Preliminaries

Stack sorting and patterns

(Meta)Theorem
The set of permutations which can be sorted by a given network is a
permutation class.

This is no longer true if we impose restrictions on the procedure, i.e. if
we choose a specific algorithm to be used for the given network (e.g.,
West-2-stack sortable permutations).

Stack sorting with increasing and decreasing stacks

Preliminaries

Stack sorting and patterns

(Meta)Theorem
The set of permutations which can be sorted by a given network is a
permutation class.

This is no longer true if we impose restrictions on the procedure, i.e. if
we choose a specific algorithm to be used for the given network (e.g.,
West-2-stack sortable permutations).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Our starting point: the machine D
k
I

k + 1 stacks in series:

◮ the first k stacks are decreasing (i.e. elements are maintained in
decreasing order from top to bottom);

◮ the last stack is increasing.

◮ k = 0: Stacksort;

◮ k = 1: DI machine, introduced by Rebecca Smith (2014).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Our starting point: the machine D
k
I

k + 1 stacks in series:

◮ the first k stacks are decreasing (i.e. elements are maintained in
decreasing order from top to bottom);

◮ the last stack is increasing.

◮ k = 0: Stacksort;

◮ k = 1: DI machine, introduced by Rebecca Smith (2014).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Our starting point: the machine D
k
I

k + 1 stacks in series:

◮ the first k stacks are decreasing (i.e. elements are maintained in
decreasing order from top to bottom);

◮ the last stack is increasing.

◮ k = 0: Stacksort;

◮ k = 1: DI machine, introduced by Rebecca Smith (2014).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Our starting point: the machine D
k
I

k + 1 stacks in series:

◮ the first k stacks are decreasing (i.e. elements are maintained in
decreasing order from top to bottom);

◮ the last stack is increasing.

◮ k = 0: Stacksort;

◮ k = 1: DI machine, introduced by Rebecca Smith (2014).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Our starting point: the machine D
k
I

k + 1 stacks in series:

◮ the first k stacks are decreasing (i.e. elements are maintained in
decreasing order from top to bottom);

◮ the last stack is increasing.

◮ k = 0: Stacksort;

◮ k = 1: DI machine, introduced by Rebecca Smith (2014).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Results on the DI machine

Theorem (Smith, 2014)
The permutations sorted by a decreasing stack followed by an increasing
one form the class Av(3241, 3142).

Corollary (Smith, 2014; Kremer, 2000)
The number of DI -sortable permutations of length n is equal to the
(n − 1)-st large Schröder number.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Results on the DI machine

Theorem (Smith, 2014)
The permutations sorted by a decreasing stack followed by an increasing
one form the class Av(3241, 3142).

Corollary (Smith, 2014; Kremer, 2000)
The number of DI -sortable permutations of length n is equal to the
(n − 1)-st large Schröder number.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

k-sortable permutations

B(k) = {π ∈ S | there is a sequence of legal operations di1 , . . . , dis that sorts π}

Goal: understand the basis of B(k).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

k-sortable permutations

B(k) = {π ∈ S | there is a sequence of legal operations di1 , . . . , dis that sorts π}

Goal: understand the basis of B(k).

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

The case k = 2

Theorem
For j ≥ 0, define the permutation:

αj = 2j + 4, 3, a1, b1, a2, b2, . . . , aj , bj , 1, 5, 2

where:
{

Aj = (a1, . . . , aj) = (2j + 2, 2j , 2j − 2, . . . , 6, 4),

Bj = (b1, . . . , bj) = (2j + 5, 2j + 3, 2j + 1, . . . , 9, 7).

Then the set of permutations {αj}j≥0 constitutes an infinite antichain
each of whose elements is not 2-sortable. Moreover, αj is minimal with
respect to such a property, i.e. if we remove any element of αj we obtain
a 2-sortable permutation. As a consequence, the basis of B(2) is infinite,
since it contains the infinite antichain {αj}j≥0.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10, 3, 8, 11, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10, 3, 8, 11, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10

3, 8, 11, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10 3

8, 11, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10 3
8

11, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

11
10

3
8

6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

11
10 8 3

6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

11
10

8, 3, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.

◮ Remove 2j + 4.

◮ Remove 3.

◮ Remove ai .

◮ Remove bi .

◮ Remove either 1 or 5 or 2.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.

◮ Remove 2j + 4.

◮ Remove 3.

◮ Remove ai .

◮ Remove bi .

◮ Remove either 1 or 5 or 2.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.

◮ Remove 2j + 4.

◮ Remove 3.

◮ Remove ai .

◮ Remove bi .

◮ Remove either 1 or 5 or 2.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.

◮ Remove 2j + 4.

◮ Remove 3.

◮ Remove ai .

◮ Remove bi .

◮ Remove either 1 or 5 or 2.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.

◮ Remove 2j + 4.

◮ Remove 3.

◮ Remove ai .

◮ Remove bi .

◮ Remove either 1 or 5 or 2.

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

3, 8, 10, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

3

8, 10, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

3

8, 10, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

3 8

10, 6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

10 3 8

6, 9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

10 3
8

6

9, 4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

10
9
8

3 6

4, 7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

10
9
8

3
6

4

7, 1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

10
9
8
7
6

3 4

1, 5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

10
9
8
7
6

3
4

1

5, 2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

10
9
8
7
6
5
4
3

1

2

Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

First algorithm: left greedy

Priorities of operations: di ✄ dj whenever i > j .

Blg (k) = {π : π is sorted by the Dk I machine using the left-greedy procedure}

Proposition
For every k ≥ 1, Blg (k) = Av(231).

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

First algorithm: left greedy

Priorities of operations: di ✄ dj whenever i > j .

Blg (k) = {π : π is sorted by the Dk I machine using the left-greedy procedure}

Proposition
For every k ≥ 1, Blg (k) = Av(231).

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

First algorithm: left greedy

Priorities of operations: di ✄ dj whenever i > j .

Blg (k) = {π : π is sorted by the Dk I machine using the left-greedy procedure}

Proposition
For every k ≥ 1, Blg (k) = Av(231).

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

Comparison with Stacksort

Thus the left greedy algorithm sorts precisely the same permutations as
Stacksort does.

However, the two algorithms are not equivalent: for instance, when
k = 1, on the input permutation 2341:

◮ the left greedy DI machine outputs 2134;

◮ Stacksort outputs 2314.

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

Comparison with Stacksort

Thus the left greedy algorithm sorts precisely the same permutations as
Stacksort does.

However, the two algorithms are not equivalent: for instance, when
k = 1, on the input permutation 2341:

◮ the left greedy DI machine outputs 2134;

◮ Stacksort outputs 2314.

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

Comparison with Stacksort

Thus the left greedy algorithm sorts precisely the same permutations as
Stacksort does.

However, the two algorithms are not equivalent: for instance, when
k = 1, on the input permutation 2341:

◮ the left greedy DI machine outputs 2134;

◮ Stacksort outputs 2314.

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

Comparison with Stacksort

φk : Sn −→ Sn

φk (π) = the permutation which exits the last (i.e., the k-th) decreasing stack.

Of course, φk preserves the property of being a 231-avoider.
What further properties does φk have?
For instance, for any given π, the sequence {φk(π)}k∈N eventually
becomes constant. But we do not know when this happens precisely.
For π = 36257418:

k = 1 : 36275418,

k = 2 : 37652841,

k = 3 : 37652841,

k = 4 : 38765241,

k = 5 : 38765241,

k = 6 : 38765241.

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

Comparison with Stacksort

φk : Sn −→ Sn

φk (π) = the permutation which exits the last (i.e., the k-th) decreasing stack.

Of course, φk preserves the property of being a 231-avoider.
What further properties does φk have?
For instance, for any given π, the sequence {φk(π)}k∈N eventually
becomes constant. But we do not know when this happens precisely.
For π = 36257418:

k = 1 : 36275418,

k = 2 : 37652841,

k = 3 : 37652841,

k = 4 : 38765241,

k = 5 : 38765241,

k = 6 : 38765241.

Stack sorting with increasing and decreasing stacks

A left greedy algorithm

Comparison with Stacksort

φk : Sn −→ Sn

φk (π) = the permutation which exits the last (i.e., the k-th) decreasing stack.

Of course, φk preserves the property of being a 231-avoider.
What further properties does φk have?
For instance, for any given π, the sequence {φk(π)}k∈N eventually
becomes constant. But we do not know when this happens precisely.
For π = 36257418:

k = 1 : 36275418,

k = 2 : 37652841,

k = 3 : 37652841,

k = 4 : 38765241,

k = 5 : 38765241,

k = 6 : 38765241.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

Second algorithm: almost left greedy

Priorities of operations: dk+1 > dk−1 > dk−2 > · · · > d1 > d0 > dk .
This means that the algorithm always performs the leftmost possible
operation, except for the push operation into the increasing stack, which
is performed last.

Balg (k) = {π : π is sorted by the Dk I machine using the almost left-greedy procedure}

Unfortunately, Balg (k) is not in general a class: for k = 2, 631425 is
sortable, but its pattern 52314 isn’t.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

Second algorithm: almost left greedy

Priorities of operations: dk+1 > dk−1 > dk−2 > · · · > d1 > d0 > dk .
This means that the algorithm always performs the leftmost possible
operation, except for the push operation into the increasing stack, which
is performed last.

Balg (k) = {π : π is sorted by the Dk I machine using the almost left-greedy procedure}

Unfortunately, Balg (k) is not in general a class: for k = 2, 631425 is
sortable, but its pattern 52314 isn’t.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

Second algorithm: almost left greedy

Priorities of operations: dk+1 > dk−1 > dk−2 > · · · > d1 > d0 > dk .
This means that the algorithm always performs the leftmost possible
operation, except for the push operation into the increasing stack, which
is performed last.

Balg (k) = {π : π is sorted by the Dk I machine using the almost left-greedy procedure}

Unfortunately, Balg (k) is not in general a class: for k = 2, 631425 is
sortable, but its pattern 52314 isn’t.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

Proposition
Let π be a permutation that is not almost left-greedy D2I sortable. Then
one of the following cases holds:

◮ π contains 3214;

◮ π contains one of the barred patterns listed above;

◮ π contains an occurrence of 52314 that extends to 82714536 (resp.,
83714526) which in turn is part of one of the following patterns:

◮ 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
◮ 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
◮ 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
◮ 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
◮ 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
◮ 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

In fact, we can generate an infinite sequence of permutations (γn)n∈N,
with γn ∈ S3n+2, such that γn ≤ γn+1 for all n, and permutations having
even index are sortable, whereas permutations having odd index are not.

Formally,

γn = 3n+ 2, 2 3n + 1 1
︸ ︷︷ ︸

231

, 4 3n 3
︸ ︷︷ ︸

231

· · · 2n − 2 2n + 3 2n − 3
︸ ︷︷ ︸

231

2n 2n + 1 2n − 1
︸ ︷︷ ︸

231

2n+ 2,

and we have:

◮ γ1 = 52314 /∈ Balg (2);

◮ γ2 = 82714536 ∈ Balg (2);

◮ γ3 = 11 2 10 14936758 /∈ Balg (2);
...

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

In fact, we can generate an infinite sequence of permutations (γn)n∈N,
with γn ∈ S3n+2, such that γn ≤ γn+1 for all n, and permutations having
even index are sortable, whereas permutations having odd index are not.

Formally,

γn = 3n+ 2, 2 3n + 1 1
︸ ︷︷ ︸

231

, 4 3n 3
︸ ︷︷ ︸

231

· · · 2n − 2 2n + 3 2n − 3
︸ ︷︷ ︸

231

2n 2n + 1 2n − 1
︸ ︷︷ ︸

231

2n+ 2,

and we have:

◮ γ1 = 52314 /∈ Balg (2);

◮ γ2 = 82714536 ∈ Balg (2);

◮ γ3 = 11 2 10 14936758 /∈ Balg (2);
...

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

In fact, we can generate an infinite sequence of permutations (γn)n∈N,
with γn ∈ S3n+2, such that γn ≤ γn+1 for all n, and permutations having
even index are sortable, whereas permutations having odd index are not.

Formally,

γn = 3n+ 2, 2 3n + 1 1
︸ ︷︷ ︸

231

, 4 3n 3
︸ ︷︷ ︸

231

· · · 2n − 2 2n + 3 2n − 3
︸ ︷︷ ︸

231

2n 2n + 1 2n − 1
︸ ︷︷ ︸

231

2n+ 2,

and we have:

◮ γ1 = 52314 /∈ Balg (2);

◮ γ2 = 82714536 ∈ Balg (2);

◮ γ3 = 11 2 10 14936758 /∈ Balg (2);
...

Stack sorting with increasing and decreasing stacks

An almost left greedy algorithm

The case k = 2

In fact, we can generate an infinite sequence of permutations (γn)n∈N,
with γn ∈ S3n+2, such that γn ≤ γn+1 for all n, and permutations having
even index are sortable, whereas permutations having odd index are not.

Formally,

γn = 3n+ 2, 2 3n + 1 1
︸ ︷︷ ︸

231

, 4 3n 3
︸ ︷︷ ︸

231

· · · 2n − 2 2n + 3 2n − 3
︸ ︷︷ ︸

231

2n 2n + 1 2n − 1
︸ ︷︷ ︸

231

2n+ 2,

and we have:

◮ γ1 = 52314 /∈ Balg (2);

◮ γ2 = 82714536 ∈ Balg (2);

◮ γ3 = 11 2 10 14936758 /∈ Balg (2);
...

Stack sorting with increasing and decreasing stacks

Further work

What next?

There are several interesting things that are still to explore.

◮ Smarter algorithms for the Dk I machine? An optimal one (at least
in the k = 2 case)?

◮ What about making two passes from Rebecca’s DI machine?
Analogies with West-2-stack-sortable permutations?

◮ Enumerations?

Stack sorting with increasing and decreasing stacks

Further work

What next?

There are several interesting things that are still to explore.

◮ Smarter algorithms for the Dk I machine? An optimal one (at least
in the k = 2 case)?

◮ What about making two passes from Rebecca’s DI machine?
Analogies with West-2-stack-sortable permutations?

◮ Enumerations?

Stack sorting with increasing and decreasing stacks

Further work

What next?

There are several interesting things that are still to explore.

◮ Smarter algorithms for the Dk I machine? An optimal one (at least
in the k = 2 case)?

◮ What about making two passes from Rebecca’s DI machine?
Analogies with West-2-stack-sortable permutations?

◮ Enumerations?

	Preliminaries
	Many decreasing stacks followed by an increasing one
	A left greedy algorithm
	An almost left greedy algorithm
	Further work

