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Stack sorting with increasing and decreasing stacks

Preliminaries

Stack sorting (and relatives...)

General formulation:

INPUT - a permutation π;

MACHINE - a network of devices (may be stacks, queues, etc...), connected in
series or in parallel (or in some more fancy way...);

OUTPUT - another permutation f (π), which is hopefully the identity, otherwise
somehow ”closer” to the identity than the original permutation π.
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Preliminaries

Typical questions

◮ Characterize the permutations that can be sorted by a given network.

◮ Enumerate sortable permutations with respect to their length.

◮ If the network is too complex, find a specific algorithm that sorts
“many” input permutations and characterize such permutations.
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Preliminaries

Stack sorting and patterns

(Meta)Theorem
The set of permutations which can be sorted by a given network is a
permutation class.

This is no longer true if we impose restrictions on the procedure, i.e. if
we choose a specific algorithm to be used for the given network (e.g.,
West-2-stack sortable permutations).
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Many decreasing stacks followed by an increasing one

Our starting point: the machine D
k
I

k + 1 stacks in series:

◮ the first k stacks are decreasing (i.e. elements are maintained in
decreasing order from top to bottom);

◮ the last stack is increasing.

◮ k = 0: Stacksort;

◮ k = 1: DI machine, introduced by Rebecca Smith (2014).
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Many decreasing stacks followed by an increasing one

Results on the DI machine

Theorem ( Smith, 2014 )
The permutations sorted by a decreasing stack followed by an increasing
one form the class Av(3241, 3142).

Corollary ( Smith, 2014; Kremer, 2000 )
The number of DI -sortable permutations of length n is equal to the
(n − 1)-st large Schröder number.
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Many decreasing stacks followed by an increasing one

Operations of the D
k
I machine

◮ d0: push the next element of the input permutation into the first
decreasing stack D1;

◮ di , for i = 1, . . . , k − 1: pop an element from Di and push it into
the next decreasing stack Di+1;

◮ dk : pop an element from Dk and push it into the increasing stack I ;

◮ dk+1: pop an element from the increasing stack I and output it (by
placing it on the right of the list of elements that have already been
output).

Legal operation: when it does not violate the restrictions on the stacks.

Special case: dk+1 is legal either if we are pushing into the output the
smallest among the elements not already in the output or if all the other
operations are not legal
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B(k) = {π ∈ S | there is a sequence of legal operations di1 , . . . , dis that sorts π}

Goal: understand the basis of B(k).
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Many decreasing stacks followed by an increasing one

The case k = 2

Theorem
For j ≥ 0, define the permutation:

αj = 2j + 4, 3, a1, b1, a2, b2, . . . , aj , bj , 1, 5, 2

where:
{

Aj = (a1, . . . , aj) = (2j + 2, 2j , 2j − 2, . . . , 6, 4),

Bj = (b1, . . . , bj) = (2j + 5, 2j + 3, 2j + 1, . . . , 9, 7).

Then the set of permutations {αj}j≥0 constitutes an infinite antichain
each of whose elements is not 2-sortable. Moreover, αj is minimal with
respect to such a property, i.e. if we remove any element of αj we obtain
a 2-sortable permutation. As a consequence, the basis of B(2) is infinite,
since it contains the infinite antichain {αj}j≥0.
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Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10, 3, 8, 11, 6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10, 3, 8, 11, 6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10

3, 8, 11, 6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10 3

8, 11, 6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

10 3
8

11, 6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

11
10

3
8

6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

αj is not 2-sortable: induction on j .

◮ j = 0: the permutation 43152 is not 2-sortable.

◮ Generic j :

output input

11
10 8 3

6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof
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output input

11
10

8, 3, 6, 9, 4, 7, 1, 5, 2



Stack sorting with increasing and decreasing stacks

Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.

◮ Remove 2j + 4.

◮ Remove 3.

◮ Remove ai .

◮ Remove bi .

◮ Remove either 1 or 5 or 2.
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Many decreasing stacks followed by an increasing one

Proof

All patterns of αj are 2-sortable: case-by-case analysis.
Remove 2j + 4:

output input

1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Stack sorting with increasing and decreasing stacks

A left greedy algorithm

First algorithm: left greedy

Priorities of operations: di ✄ dj whenever i > j .

Blg (k) = {π : π is sorted by the Dk I machine using the left-greedy procedure}

Proposition
For every k ≥ 1, Blg (k) = Av(231).
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A left greedy algorithm

Comparison with Stacksort

Thus the left greedy algorithm sorts precisely the same permutations as
Stacksort does.

However, the two algorithms are not equivalent: for instance, when
k = 1, on the input permutation 2341:

◮ the left greedy DI machine outputs 2134;

◮ Stacksort outputs 2314.
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A left greedy algorithm

Comparison with Stacksort

φk : Sn −→ Sn

φk (π) = the permutation which exits the last (i.e., the k-th) decreasing stack.

Of course, φk preserves the property of being a 231-avoider.
What further properties does φk have?
For instance, for any given π, the sequence {φk(π)}k∈N eventually
becomes constant. But we do not know when this happens precisely.
For π = 36257418:

k = 1 : 36275418,

k = 2 : 37652841,

k = 3 : 37652841,

k = 4 : 38765241,

k = 5 : 38765241,

k = 6 : 38765241.
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An almost left greedy algorithm

Second algorithm: almost left greedy

Priorities of operations: dk+1 > dk−1 > dk−2 > · · · > d1 > d0 > dk .
This means that the algorithm always performs the leftmost possible
operation, except for the push operation into the increasing stack, which
is performed last.

Balg (k) = {π : π is sorted by the Dk I machine using the almost left-greedy procedure}

Unfortunately, Balg (k) is not in general a class: for k = 2, 631425 is
sortable, but its pattern 52314 isn’t.
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An almost left greedy algorithm

The case k = 2

For the almost left greedy D2I machine we only have some partial results.

Proposition
Let π be an almost left-greedy D2I sortable permutation; then:

◮ π avoids 3214;

◮ π avoids the following barred patterns, each of which is obtained by
suitably adding barred elements to the pattern 52314:

◮ 631̄425;
◮ 72̄1̄4536, 73̄1̄4526;
◮ 7̄2̄81̄4536, 7̄3̄81̄4526;
◮ 8̄2̄71̄4536, 8̄3̄71̄4526.
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An almost left greedy algorithm

The case k = 2

In fact, we can generate an infinite sequence of permutations (γn)n∈N,
with γn ∈ S3n+2, such that γn ≤ γn+1 for all n, and permutations having
even index are sortable, whereas permutations having odd index are not.

Formally,

γn = 3n+ 2, 2 3n + 1 1
︸ ︷︷ ︸

231

, 4 3n 3
︸ ︷︷ ︸

231

· · · 2n − 2 2n + 3 2n − 3
︸ ︷︷ ︸

231

2n 2n + 1 2n − 1
︸ ︷︷ ︸

231

2n+ 2,

and we have:

◮ γ1 = 52314 /∈ Balg (2);

◮ γ2 = 82714536 ∈ Balg (2);

◮ γ3 = 11 2 10 14936758 /∈ Balg (2);
...
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Further work

What next?

There are several interesting things that are still to explore.

◮ Smarter algorithms for the Dk I machine? An optimal one (at least
in the k = 2 case)?

◮ What about making two passes from Rebecca’s DI machine?
Analogies with West-2-stack-sortable permutations?

◮ Enumerations?
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