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Typical questions in PP

For a permutation class C:
• What is the growth rate?
• What is the generating function? (e.g. rational, algebraic, D-finite)
• What is the basis? (Is it finite?)
• What do the permutations ‘look like’?



Examples: Av(231) and Av(321)

Both enumerated by Catalan numbers: f (z) =
1−
√

1− 4z
2z

Av(231) Av(321)
Growth rate 4 4

Generating function algebraic algebraic

Basis 231 321

‘Look like’
Av(231)

Av(231)

· ·· ·· ·
· ·· ·
· ·· ·· ·
· ·· ·· ·
· ·· ·
· ·· ·· ·
· ·· ·· ·
· ·· ·
· ·· ·· ·



What about subclasses of Av(231), Av(321)?

C ( Av(231) D ( Av(321)

Growth rate

Countably many
possibilities

Includes [2.36, 2.48]
(Bevan, 2018)

Generating function

Rational (Albert,
Atkinson, 2005)

Could be anything

Basis

Finite Finite or infinite

What’s causing Av(321) to misbehave?
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§1 An antichain is born



Back in 1972. . .

Sorting Using Networks of Queues and Stacks 

ROBERT TAR J A N  

Stanford University,* Stanford, California 

AI~STRAC'r. The problem of sor t ing  a sequence of numbers  using a ne twork  of queues and  s tacks  
is presented. A charac te r iza t ion  of sequences sor table  using parallel  queues is given,  and par t ia l  
characterizations of sequences sor table  using parallel s tacks and networks  of queues are given. 

KEY WORDS AND PHRASES: sor t ing,  network,  queue,  s tack 

CR CATEGORIES: 5.31, 5.32 

Inspired by Knuth  [2, p. 234], we wish to consider the following problem: Suppose 
we are presented with the layout  of a railroad switchyard (Figure 1 ). I f  a train is 
driven into one end of the yard,  what  rearrangements  of the cars may  be made before 
the train comes out the other end? 

In order to get a handle on the problem, we must  introduce some formalization. 
A switchyard is an  acyclic directed graph, with a unique source and a unique sink 
(Figure 2). Each vertex represents a siding. The vertex/siding is assumed to have 
indefinite storage space and may  be a stack, a queue, or a deque of some sort (see 
Knuth [2, p. 234]). A stack is a siding which has the property tha t  the last element 
inserted is the first to be removed. A queue has the proper ty  tha t  the first element 
inserted is the first to be removed. In  the switchyard, the sidings associated with the 
source and sink are assumed to be queues. 

Suppose a finite sequence of numbers  s = (sl, s2, • • • , sn) is placed in the source 
queue of a switchyard (Figure 3). We may  rearrange s by moving the elements of s 
through the switchyard. At each step, an element is moved from some siding to 
another siding along an arc of the switchyard. After a suitable number  of such moves, 
all elements will be in the sink queue. I f  they are in order, smallest to largest, we 
have sorted the sequence s using the switchyard. We wish to analyze the sequences s 
which may be sorted in a switchyard Y. 

We lose nothing in our formalism by allowing storage only on the vertices, and 
not on the arcs of the switchyard. We ignore questions concerning the finite size of 
the sidings; assuming small sidings complicates the problem considerably. A circuit 
in the switchyard will allow us to sort any sequence; thus we do not allow circuits. 
Having established our model, we proceed to discover its properties. 

Copyright  (~) 1972, Associat ion for Comput ing  Machinery ,  Inc.  
General permission to republish,  bu t  not  for profit, all or pa r t  of this  mater ia l  is granted,  

provided t h a t  reference is made to this  publ ica t ion,  to its date  of issue, and  to the  fact  t ha t  
reprinting privileges were gran ted  by permission of the  Associat ion for Comput ing  Machinery.  
Author 's  present  address:  D e p a r t m e n t  of Compute r  Science, Upson Hall, Cornel |  Univers i ty ,  
Ithaca, NY 14850. 
* Computer  Science Depar tmen t .  This  research was suppor ted  by the Hertz  Founda t ion  
and the Nat iona l  Science Founda t ion  (GJ-992). 

Journal of the Association for Computing Machinery. Vol. 19, No. 2, April 1972, pp. 341-346. 
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Formality, briefly

• An antichain: any set of permutations where no permutation is
contained in any other.

A = {α1, α2, . . . : αi 6≤ αj for all i, j}.

• N.B. By minimality, the basis of a permutation class is always an
antichain.

• Well-quasi-order or partial well-order: no infinite antichains.
[I’ll avoid these terms in this talk.]



Antichains, bases and enumeration

Proposition (Atkinson, Murphy, Ruškuc, 2002)
Let C be a finitely based permutation class. The following are equivalent:
(1) Every subclass of C is finitely based,
(2) C contains at most countably many subclasses,
(3) C has no infinite antichain.

Conjecture (Vatter, 2015)
If C is a permutation class that contains no infinite antichains, then it has an
algebraic generating function.



Back to those subclasses of Av(231), Av(321)

C ( Av(231) D ( Av(321)

Growth rate
Countably many

possibilities
Includes [2.36, 2.48]

(Bevan, 2018)

Generating function
Rational (Albert,
Atkinson, 2005)

Could be anything

Basis Finite Finite or infinite

Infinite antichains None Osc



Diversion 1: intervals of growth rates

Theorem (Bevan, 2018; Vatter, 2010)
Every real number above 2.35698 is the growth rate of some permutation
class.

‘Proof’.
Create sum-closed classes by choosing sum indecomposables from
Osc, and some easy variants.
Using cleverness, find a class with any growth rate above the unique
real root of x8 − 2x7 − x5 − x4 − 2x3 − 2x2 − x− 1.

N.B. ‘sum-closed’ guarantees existence of a growth rate (Arratia, 1999)



Underpinning Osc

4 1 2 7 3 5 6 4 1 2 6 3 9 5 7 8 4 1 2 6 3 8 5 11 7 9 10 4 1 2 6 3 8 5 10 7 13 9 11 12

Osc (above) and its ‘easy variants’ all build on increasing oscillations:

3 1 5 2 6 4 ≤ 3 1 5 2 7 4 6 ≤ 3 1 5 2 7 4 8 6 ≤ 3 1 5 2 7 4 9 6 8

N.B. These form a chain (not an antichain!).



Diversion 2: Gollan permutations

SIAM J. COMPUT0
Vol. 25, No. 2, pp. 272-289, April 1996

() 1996 Society for Industrial and Applied Mathematics
OO3

GENOME REARRANGEMENTS AND SORTING BY REVERSALS*

VINEET BAFNAt AND PAVEL A. PEVZNER$

Abstract. Sequence comparison in molecular biology is in the beginning of a major paradigm
shift--a shift from gene comparison based on local mutations (i.e., insertions, deletions, and substitu-
tions of nucleotides) to chromosome comparison based on global rearrangements (i.e., inversions and
transpositions of fragments). The classical methods of sequence comparison do not work for global
rearrangements, and little is known in computer science about the edit distance between sequences
if global rearrangements are allowed. In the simplest form, the problem of gene rearrangements
corresponds to sorting by reversals, i.e., sorting of an array using reversals of arbitrary fragments.
Recently, Kececioglu and Sankoff gave the first approximation algorithm for sorting by reversals with
guaranteed error bound 2 and identified open problems related to chromosome rearrangements. One
of these problems is Gollan’s conjecture on the reversal diameter of the symmetric group. This pa-
per proves the conjecture. Further, the problem of expected reversal distance between two random
permutations is investigated. The reversal distance between two random permutations is shown to
be very close to the reversal diameter, thereby indicating that reversal distance provides a good
separation between related and nonrelated sequences in molecular evolution studies. The gene rear-
rangement problem forces us to consider reversals of signed permutations, as the genes in DNA could
be positively or negatively oriented. An approximation algorithm for signed permutation is presented,
which provides a performance guarantee of . Finally, using the signed permutations approach, an
approximation algorithm for sorting by reversals is described which achieves a performance guarantee
of 1/4o

Key words, computational molecular biology, sorting by reversals, genome rearrangements

AMS subject classifications. 68Q25, 68Q05

1. Introduction. Genus Lobelia comprises over 350 species that range from
small, slender herbs to woody, giant-rosette plants. Figure 1 presents the order of
genes in Tobacco and Lobelia fervens chloroplast genomes with a hypothetical se-
quence of rearrangement events (Knox et al. [KDP93]) during evolution of Lobelia
fervens from a tobacco-like ancestral genome.

It is not so easy to verify that the evolutionary events shown in Fig. 1 represent
the shortest series of reversals transforming the Tobacco permutation into the Lobelia
fervens permutation. In fact, Theorem 2 of this paper indicates that the shortest
sequence of rearrangement events contains just 4 reversals, shown in Fig. 2 (however,
for the case of signed permutations (see below) the evolutionary events presented in
Fig. 1 do represent the shortest series of reversals).

With the advent of large-scale DNA mapping and sequencing, the number of
genome comparison problems similar to the one presented in Fig. 1 is rapidly growing
in different areas, including evolution of plant cpDNA (Raubeson and Jansen [RJ92],
Hoot and Palmer [HP94]) and mtDNA (Palmer and nerbon [PH88], Fauron and
Savlik [FH89]), animal mtDNA (Soffman et al. [HBB92], Sankoff et al. [SLA92]), vi-
rology (Soonin and Dolya [K93], Hannenhalli et al. [HCKP95]), Drosophila genetics
(Whiting et al. [WPFJ89]), and comparative physical mapping (Lyon [L88]). Genome
comparison has certain merits and demerits as compared to classical gene comparison.

Received by the editors June 17, 1993; accepted for publication (in revised form) August 22,
1994. A preliminary version of this paper appeared in Proc. 34th IEEE Symposium on the Founda-
tions of Computer Science, 1993, pp. 148-157.

Computer Science Department, The Pennsylvania State University, University Park, PA 16802.
Computer Science Department, The Pennsylvania State University, University Park, PA 16802

(pevznercs.psu.edu).
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274 VINEET BAFNA AND PAVEL PEVZNER

Given permutations r and a, the reversal distance problem is to find a series of
reversals pl,p2,...,pt such that ’Pl"p2""Pt a and t is minimum. We call t
the reversal distance between r and a. Note that reversal distance between r and a
equals the reversal distance between a-lr and the identity permutation . Sorting
by reversals is the problem of finding reversal distance d(r), between r and .

Reversals generate the symmetric group Sn. Given an arbitrary permutation
from Sn, we seek a shortest product of generators pl "p2""pt that equals . Even
and Goldreich [EG81] show that given a set of generators of a permutation group and
a permutation r, determining the shortest product of generators that equals r is NP-
hard. Jerrum [J85] proves that the problem is PSPACE-complete, and remains so,
when restricted to two generators. In our problem, the generator set is fixed. However,
Kececioglu and Sankoff [KS93] conjecture that sorting by reversals is NP-complete.

Gates and Papadimitriou [GP79] studied a similar sorting by prefix reversals prob-
lem (also known as pancake-flipping problem)" given an arbitrary permutation , find
dpre,(r), which is the minimum number of reversals of the form p(1, i) that sort
Their concern is with bounds on the prefix reversal diameter of the symmetric group,
dpre$(n) maxrs dpre$(Tr). They show that dpre.f(n) <_ n + (see also [GT78])
and that for infinitely many n, dpref(n) >_ n17 [GP79]. Aigner and West [AW87]
consider the diameter of sorting when the operation is reinsertion of the first element,
and Amato et al. [ABSR89] consider a variation inspired by reversing trains. Kece-
cioglu and Sankoff [KS93] found an approximation algorithm for sorting by reversals
with performance guarantee 2. They also devised efficient bounds, allowing them to
solve the reversal distance problem optimally or almost optimally for n ranging from
30 to 50. This range covers the biologically important case of mitochondrial genomes.

Define d(n) maxes d(r) to be the reversal diameter of the symmetric group
of order n. Gollan conjectured that d(n) n- 1 and that only one permutation
Vn, and its inverse, VI, require n- 1 reversals to be sorted (see Kececioglu and
Sankoff [KS93] for details). The Gollan permutation, in one-line notation, is defined
as follows:

(3, 1,5,2,7,4,...,n- 3, n- 5, n- 1, n- 4, n,n- 2), n even,
7n (3, 1, 5, 2, 7, 4, n 6, n 2, n 5, n, n 3, n 1), n odd.

For n < 11, Gollan verified this conjecture using extensive computations. Kece-
cioglu and Sankoff [KS93] developed lower bounds for reversal distance, allowing them
to verify Gollan’s conjecture for n < 200 for n _= 1 (mod 3). In the present paper,
we introduce the notion of the breakpoint graph of a permutation and establish the
links between reversal distance and maximum cycle decomposition of this graph. This
construction allows us to prove Gollan’s conjecture. Further, we sttdy the problem
of expected reversal distance between two random permutations. We demonstrate
that reversal distance between two random permutations is very close to the reversal
diameter of the symmetric group, thereby indicating that reversal distance provides
a good separation between related and nonrelated sequences in molecular evolution
studies.

Afterwards, we study reversals of signed permutations. The Lobelia fervens per-
mutation (Fig. 1) corresponds to the signed permutation (-7, +1, +2, +4, +5, +3,-6,
+8). In the biologically more relevant signed case, every reversal of fragment [i,j]
changes the signs of the elements within that fragment. We are interested in the min-
imum number of reversals required to transform the signed permutation r into the
identity signed permutation (+1, +2,..., +n). We devise an approximation algorithm
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Diversion 3: Rational superclasses

Theorem (Albert, B., Vatter, 2013)
Every proper permutation class C is contained in a permutation class with a
rational generating function.

‘Proof’.
Use increasing oscillations to make an enormous infinite antichain

A
such that Av(A) ∪A has a rational generating function.
Union this with C, and remove enough antichain elements of each
length to preserve rationality.
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Diversion 3: Rational superclasses

Theorem (Albert, B., Vatter, 2013)
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§2 Labelled containment



Labelled containment

• Colour/label each entry of σ and π red or black.
• σ ≤` π if σ embeds in π so that the labels match up.

(Generalisations with more labels possible.)

Examples:

1 3 2 ≤` 2 4 1 3 1 3 2 6≤` 2 4 1 3



Labelled containment and Osc

3 1 5 2 6 4 ≤ 3 1 5 2 7 4 9 6 10 8

• Increasing oscillations only embed contiguously
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Labelled containment and Osc

3 1 5 2 6 4 6≤` 3 1 5 2 7 4 9 6 10 8

• Cannot embed lowest & highest into lowest & highest



A labelled infinite antichain

3 1 5 2 6 4 3 1 5 2 7 4 6 3 1 5 2 7 4 8 6 3 1 5 2 7 4 9 6 8

Warning! Abuse of notation:

‘A class C contains a labelled infinite antichain’

really means

‘C contains an infinite set of permutations whose entries can be
labelled red/black so that it forms an infinite antichain in ≤`.’



No labelled antichain⇒ finite basis

Proposition (After Pouzet, 1972)
A permutation class C that contains no infinite labelled antichain is finitely
based.

Proof.
Suppose C = Av(B) is not finitely based. For each β ∈ B:

β

7→ 7→

β−

B− = {β− : β ∈ B} is a labelled antichain in C: contradiction.
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No labelled antichain⇒ finite basis

Proposition (After Pouzet, 1972)
A permutation class C that contains no infinite labelled antichain is finitely
based.

Proof.
Suppose C = Av(B) is not finitely based. For each β ∈ B:

β

7→ 7→

β−

B− = {β− : β ∈ B} is a labelled antichain in C: contradiction.



Back to those subclasses of Av(321)

Theorem (Albert, B., Ruškuc, Vatter)
If D ( Av(321) is finitely based or does not contain an infinite antichain,
then it has a rational generating function.

Furthermore, if D ( Av(321) contains a (labelled or unlabelled) infinite
antichain then it contains long increasing oscillations.

Thus, if D ( Av(321) avoids some oscillation, then D is finitely based
and has a rational generating function.



Small permutation classes

What growth rates are allowed?

0 1 φ 2 κ λ

Kaiser, Klazar, 2003 Vatter, ‘11 Bevan ‘18, Vatter ‘10

• Growth rates below κ ≈ 2.20557: no (labelled or unlabelled)
infinite antichains (⇒ all classes finitely based).

• At κ: increasing oscillations and Osc appear (⇒ uncountably
many classes).

Theorem (Albert, Ruškuc, Vatter, 2015)
Every permutation class C with gr(C) < κ has a rational generating
function.



Smallish permutation classes

• ξ ≈ 2.30522 marks another phase transition: from countably many
to uncountably many different growth rates (Vatter).

• Classification of growth rates from κ to ξ (Pantone, Vatter).

Conjecture
The next infinite (labelled) antichain first appears in
a class of growth rate ν ≈ 3.06918.

Conjollary

Any class C with gr(C) < 3.06918 which contains only bounded length
oscillations is finitely based.
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• ξ ≈ 2.30522 marks another phase transition: from countably many
to uncountably many different growth rates (Vatter).

• Classification of growth rates from κ to ξ (Pantone, Vatter).

Conjecture
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§3 Grid classes



Grid classes

• M a 0,±1 matrix.
• π ∈ Grid(M) if π can be gridded so that each cell of π is

empty
increasing
decreasing

 if the corresponding entry ofM is


0
1
−1

.

M =

(
−1 1 1
1 −1 0

)

Grid(M) 3

π = 11 1 7 5 3 6 9 4 13 2 8 10 12
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The antithesis of Osc
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Those questions again

Grid(M)
Growth rate

ρ(M)2 (Bevan, 2015)

Generating function

Rational if acyclic†, otherwise . . .

Basis

Finite if acyclic†, otherwise . . .

Infinite antichains

None iff acyclic (Murphy, Vatter, 2003)

† – see Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2013
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Cycles in a grid class

M: m× n matrix.
GM: bipartite graph, vertices {c1, . . . , cm, r1, . . . , rn},

with cirj ∈ E(GM) if Mij 6= 0.

Example

M =

(
−1 1 1
1 −1 0

)
GM:

r1

r2

c1 c2 c3

1 −1

−1 1 1

• Acyclic: GM has no cycles.
• Unicyclic: GM has at most one cycle.
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Cycles in a grid class

M: m× n matrix.
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Questions by cyclicity

Grid(M) acyclic unicyclic polycyclic
Growth rate ρ(M)2 ρ(M)2 ρ(M)2

Generating function Rational Erm. . . Erm. . .

Basis Finite Erm. . . Erm. . .

Infinite antichains None‡ Some. . . Some. . .

‡ Not even labelled infinite antichains (⇒ finitely based).



Unicyclic grids

Following the role of Osc in Av(321), we ask:

Question
When does a subclass C of a unicyclic grid class Grid(M) contain an infinite
labelled antichain?



Key idea: �-decomposition

Example: LetM =

−1 0 1
0 1 1
1 −1 0



= �

Lemma
The class C ⊆ Grid(M) contains infinite labelled antichains if and only if the
�-indivisible gridded permutations in C do.
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Lemma
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Lemma
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Lemma
The class C ⊆ Grid(M) contains infinite labelled antichains if and only if the
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Key idea: �-decomposition

Example: LetM =

−1 0 1
0 1 1
1 −1 0



= � �

Lemma
The class C ⊆ Grid(M) contains infinite labelled antichains if and only if the
�-indivisible gridded permutations in C do.



Key idea: �-decomposition

Example: LetM =

−1 0 1
0 1 1
1 −1 0



= � �

Lemma
The class C ⊆ Grid(M) contains infinite labelled antichains if and only if the
�-indivisible gridded permutations in C do.



Consequences

Theorem (Bevan, B., Ruškuc)
For a unicyclic grid class Grid(M), any subclass C ⊆ Grid(M) contains
(labelled) infinite antichains if and only if C has infinite intersection with one
of two labelled antichains (per component of GM).

Example: ForM =

−1 0 1
0 1 1
1 −1 0

, they are:



Basis of unicyclic grids

Theorem (Bevan, B., Ruškuc)
Unicyclic grid classes are finitely based.

Proof outline (if it survives writing up. . . )

If C ( Grid(M) contains no labelled antichains, then neither does C+1.

Write Grid(M) = Av(B) and argue that B ⊂ C+1.



Basis of unicyclic grids

Theorem (Bevan, B., Ruškuc)
Unicyclic grid classes are finitely based.

Proof outline (if it survives writing up. . . )

If C ( Grid(M) contains no labelled antichains, then neither does C+1.

Write Grid(M) = Av(B) and argue that B ⊂ C+1.



Enumeration of unicycles

Proposition (Bevan, PhD thesis 2015)
The gridded permutations in a unicyclic grid class have an algebraic
generating function.

Work in progress
A unicyclic grid class should have an algebraic generating function.



Questions by cyclicity

Grid(M) acyclic unicyclic polycyclic
Growth rate ρ(M)2 ρ(M)2 ρ(M)2

Generating function Rational Erm. . . Erm. . .

Basis Finite Erm. . . Erm. . .

Infinite antichains None‡ Some. . . Some. . .

‡ Not even labelled infinite antichains (⇒ finitely based).



Questions by cyclicity

Grid(M) acyclic unicyclic polycyclic
Growth rate ρ(M)2 ρ(M)2 ρ(M)2

Generating function Rational ?Algebraic Erm. . .

Basis Finite Finite Erm. . .

Infinite antichains None‡ ‘Two’ Some. . .

‡ Not even labelled infinite antichains (⇒ finitely based).



Thanks!


