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Atomicity and the JEP

@ A permutation class is atomic if it cannot be expressed as a union of
two proper subclasses.

Suppose K is a permutation class, with no infinite antichain in the
containment order. Then K can be expressed as a finite union of atomic
subclasses. Furthermore, the upper growth rate of K is equal to the
maximum upper growth rate among its atomic subclasses.

@ We view permutations as structures in a language of two linear orders,
and so embeddings correspond to containment.

@ A hereditary class of structures C has the joint embedding property
(JEP) if for every A, B € C, there is a C € C embedding both.

A permutation class is atomic iff it has the JEP.

@ The JEP is equivalent to the existence of a weak universal limit.
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The decidability of the JEP

Question (Ruskuc, ‘05 [3])

Is there an algorithm that, given finite set of forbidden permutations,
decides whether the corresponding permutation class has the JEP?

@ Positive answer in some special cases, such as grid classes [4].

@ Positive answer for the stronger property of being a natural class [2].

Theorem (B., ‘18 [1])

There is no algorithm that, given a finite set of forbidden induced subgraphs,
decides whether the corresponding hereditary graph class has the JEP.

@ The 2-dimensional nature of permutations seems to be an obstruction
to carrying out the argument.

@ 3-dimensional permutations? permutation graphs?
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The tiling problem

@ Proof by reduction from the tiling problem.
@ A tiling problem consists of
o A collection of tile-types {t1,...,t,}
o Constraints of the form “tiles of type t; cannot be above (or right of)
tiles of type t;"
@ The question is whether tiles can be assigned to cover the grid N2,
respecting the constraints

Theorem (Berger, '66)

There is no algorithm that, given a tiling problem, decides whether it has a
solution.
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Proof sketch

@ Construct two graphs: A* representing a grid, and B* representing a
suitable collection of tiles.

@ Choose a finite set of constraints to ensure that successfully joint
embedding A* and B* requires producing a valid tiling of the grid
points in A* with the tiles from B*

© Show that if the tiling problem admits a solution, then the chosen class
admits a joint embedding procedure.

@ Steps 1 and 2 ensure that the tiling problem can be solved iff we can
joint embed two particular graphs.

@ Step 3 ensures that the JEP for the whole class is equivalent to joint
embedding for those two graphs.
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The language

@ We don't work directly with graphs, but in an enriched language.
© Ordinary edges E
@ Directed edges E
© Colored edges E, E,
@ Colors for vertices Cy, ..., Ck

@ To translate to graphs

@ Break up special edges using colored vertices.
@ Attach decorations to vertices to get rid of colors.
© Ensure no forbidden subgraphs are created.
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Canonical models (1)

@ Recall A* is supposed to represent the grid N2. To construct A*:
@ Construct a directed path pg — p1 — ...
@ For every pair (pj, p;), add a grid point g; ;
© Add colored edges g; ;Expi, 8i,;E,pj
@ Every type of vertex (origin, path, grid) gets its own color.

» 80
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Canonical models (2)

@ For the case of graphs, B* could just be a set of labeled tiles t1, ..., t,.

@ For greater flexibility, B* will be a copy of A*, but with a full set of
tiles attached to each grid point.

@ Also, vertex colors in B* are distinct from A*.
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Constraints (1)

@ We wish to ensure joint embedding A* and B* solves the tiling
problem.

@ A grid point in A* is “tiled” if it is connected to a tile vertex from B*.

@ We want to force that given a grid point in A*, it is tiled by a tile from
B* with the same coordinates.

@ This is not a local condition.

@ Instead, first force the origin to be tiled, then propagate the tiling.

@ Also add constraints enforcing the tiling constraints.
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Origin-tiling constraint
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Propagation constraints
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Constraints (2)

@ We would like to force every graph to look like A* or B*.

@ We cannot enforce “totality” conditions, so must allow for partial
structures.

@ The key property we need is every grid point has at most one set of
coordinates.
@ Other constraints include:

@ Grid points have at most one E, or E,-neighbor.
@ Origin vertices have at no —-predecessor.
© Path vertices have at most 1 —-predecessor.
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Reducing from the tiling problem

@ Given a tiling problem 7T, create the corresponding graph class Gr.

@ One direction is easy: If Gy has the JEP, then can joint embed A* and
B*, and read off a solution to the tiling problem.

o Now suppose 7 has a solution T : N? — {t1,...,t,}. Given
A Begr:

@ Take the disjoint union AL B. (Note there is no uniqueness condition
on origins, grids, etc.).

@ If not finished, then a grid origin in A and one in B with a full set of
tiles, so add an edge according to T (0, 0).

© If not finished, then need to propagate tiling. As every grid point has
well-defined coordinates, we just use T(x,y).

© Check that the new edges don't create any forbidden substructures.

@ A key property of graphs is that placing an edge between two vertices
has no effect on whether we can place an edge or not between other
vertices.

@ In contrast, suppose x < x’ € Aand y € B. If place x’ < y, then must
place x < y.
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Moving to permutations

@ The 2-dimensional nature of permutations seems to makes it difficult
to represent a grid (in classes other than the class of all permutations).

@ In the straightforward representation of an n x n grid, it is easy to find
any permutation of length < n.

Is there a permutation class (other than the class of all permutations) that
represents arbitrarily large grids such that the neighbor relation is:

@ /ocal

@ determined only by the presence (not absence) of a pattern
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