Local convergence for random permutations

The case of uniform pattern-avoiding permutations

Jacopo Borga, Institut für Mathematik, Universität Zürich July 9, 2018

Dartmouth College, Hanover, New Hampshire

Our goal

Study limits of random permutations when the size tends to infinity

Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

2. Local limits:

Limiting objects: ? Corresponding statistic: ? Concrete examples: ?

SOME SIMULATIONS

SOME SIMULATIONS

The space of rooted permutations

 $\sigma = 4\ 2\ 5\ 8\ 3\ 6\ 1\ 7$

i = 5

Definition

A finite rooted permutation is a pair (σ , i), where $\sigma \in S^n$ and $i \in [n]$. We denote the set of finite rooted permutations by S_{\bullet} .

 $\sigma = 4\ 2\ 5\ 8\ 3\ 6\ 1\ 7$

$$i = 5$$

Definition

$$A_{\sigma,i} = [-i+1, |\sigma| - i]$$

Definition

$$\forall \ell, j \in A_{\sigma,i} = [-i+1, |\sigma| - i]$$
$$\ell \leq_{\sigma,i} j \Leftrightarrow \sigma_{\ell+i} \leq \sigma_{j+i}$$

Definition

Definition

Definition

Definition

Definition

$$\forall \ell, j \in A_{\sigma,i} = [-i+1, |\sigma| - i] \\ \ell \leq_{\sigma,i} j \Leftrightarrow \sigma_{\ell+i} \leq \sigma_{j+i}$$

 $2 \leq_{\sigma,i} -3 \leq_{\sigma,i} 0 \leq_{\sigma,i} -4 \leq_{\sigma,i} -2$

Definition

Definition

$$\forall \ell, j \in A_{\sigma,i} = [-i+1, |\sigma| - i]$$

$$\ell \leq_{\sigma,i} j \Leftrightarrow \sigma_{\ell+i} \leq \sigma_{j+i}$$

$$2 \leq_{\sigma,i} -3 \leq_{\sigma,i} 0 \leq_{\sigma,i} -4 \leq_{\sigma,i} -2$$

$$\leq_{\sigma,i} 1 \leq_{\sigma,i} 3$$

Definition

Definition

Definition

We call infinite rooted permutation a pair (A, \preccurlyeq) where A is an infinite interval of integers containing 0 and \preccurlyeq is a total order on A. We denote the set of infinite rooted permutations by $\mathcal{S}_{\bullet}^{\infty}$.

We call infinite rooted permutation a pair (A, \preccurlyeq) where A is an infinite interval of integers containing 0 and \preccurlyeq is a total order on A. We denote the set of infinite rooted permutations by $\mathcal{S}_{\bullet}^{\infty}$.

We underline that infinite rooted permutations can be thought as rooted at 0.

We call infinite rooted permutation a pair (A, \preccurlyeq) where A is an infinite interval of integers containing 0 and \preccurlyeq is a total order on A. We denote the set of infinite rooted permutations by $\mathcal{S}_{\bullet}^{\infty}$.

We underline that infinite rooted permutations can be thought as rooted at 0.

We set

$$\tilde{\mathcal{S}}_{\bullet} := \mathcal{S}_{\bullet} \cup \mathcal{S}_{\bullet}^{\infty},$$

namely, the set of (possibly infinite) rooted permutations.

We call infinite rooted permutation a pair (A, \preccurlyeq) where A is an infinite interval of integers containing 0 and \preccurlyeq is a total order on A. We denote the set of infinite rooted permutations by $\mathcal{S}_{\bullet}^{\infty}$.

We underline that infinite rooted permutations can be thought as rooted at 0.

We set

$$\tilde{\mathcal{S}}_{\bullet} := \mathcal{S}_{\bullet} \cup \mathcal{S}_{\bullet}^{\infty},$$

namely, the set of (possibly infinite) rooted permutations. GOAL: Define a notion of local convergence in $\tilde{\mathcal{S}}_{\bullet}$ and study limits of random permutations when the size tends to infinity.

RESTRICTION FUNCTION AROUND THE ROOT

 $\sigma = 4\ 2\ 5\ 8\ 3\ 6\ 1\ 7$

$$2 \leq_{\sigma,i} -3 \leq_{\sigma,i} 0 \leq_{\sigma,i} -4 \leq_{\sigma,i} -2 \leq_{\sigma,i} 1 \leq_{\sigma,i} 3 \leq_{\sigma,i} -1$$

Definition

The restriction function around the root is defined, for every $h \in \mathbb{N}$, by

$$\begin{aligned} r_h \colon & \tilde{\mathcal{S}}_{\bullet} \longrightarrow \mathcal{S}_{\bullet} \\ & (A, \preccurlyeq) \mapsto \left(A \cap [-h, h], \preccurlyeq \right) \,. \end{aligned}$$

RESTRICTION FUNCTION AROUND THE ROOT

 $\sigma = 4\ 2\ 5\ 8\ 3\ 6\ 1\ 7$

$$2 \leq_{\sigma,i} -3 \leq_{\sigma,i} 0 \leq_{\sigma,i} -4 \leq_{\sigma,i} -2 \leq_{\sigma,i} 1 \leq_{\sigma,i} 3 \leq_{\sigma,i} -1$$

Definition

The restriction function around the root is defined, for every $h \in \mathbb{N}$, by

$$\begin{aligned} r_h \colon & \tilde{\mathcal{S}}_{\bullet} \longrightarrow \mathcal{S}_{\bullet} \\ & (A, \preccurlyeq) \mapsto \left(A \cap [-h, h], \preccurlyeq \right) \,. \end{aligned}$$

RESTRICTION FUNCTION AROUND THE ROOT

 $\sigma = 4\ 2\ 5\ 8\ 3\ 6\ 1\ 7$

$$2 \leq_{\sigma,i} -3 \leq_{\sigma,i} 0 \leq_{\sigma,i} -4 \leq_{\sigma,i} -2 \leq_{\sigma,i} 1 \leq_{\sigma,i} 3 \leq_{\sigma,i} -1 \qquad 2 \leq_{\sigma,i} 0 \leq_{\sigma,i} -2 \leq_{\sigma,i} 1 \leq_{\sigma,i} -1$$

Definition

The restriction function around the root is defined, for every $h \in \mathbb{N}$, by

$$\begin{aligned} r_h \colon & \tilde{\mathcal{S}}_{\bullet} \longrightarrow \mathcal{S}_{\bullet} \\ & (A, \preccurlyeq) \mapsto \left(A \cap [-h, h], \preccurlyeq \right) \,. \end{aligned}$$

We say that a sequence $(A_n, \preccurlyeq_n)_{n \in \mathbb{N}}$ of rooted permutations in \tilde{S}_{\bullet} is locally convergent to an element $(A, \preccurlyeq) \in \tilde{S}_{\bullet}$, if for all H > 0 there exists $N \in \mathbb{N}$ such that for all $n \ge N$,

$$r_H(A_n, \preccurlyeq_n) = r_H(A, \preccurlyeq).$$

We say that a sequence $(A_n, \preccurlyeq_n)_{n \in \mathbb{N}}$ of rooted permutations in \tilde{S}_{\bullet} is locally convergent to an element $(A, \preccurlyeq) \in \tilde{S}_{\bullet}$, if for all H > 0 there exists $N \in \mathbb{N}$ such that for all $n \ge N$,

$$r_H(A_n, \preccurlyeq_n) = r_H(A, \preccurlyeq).$$

This topology is metrizable by a local distance *d*.
Definition

We say that a sequence $(A_n, \preccurlyeq_n)_{n \in \mathbb{N}}$ of rooted permutations in \tilde{S}_{\bullet} is locally convergent to an element $(A, \preccurlyeq) \in \tilde{S}_{\bullet}$, if for all H > 0 there exists $N \in \mathbb{N}$ such that for all $n \ge N$,

$$r_H(A_n, \preccurlyeq_n) = r_H(A, \preccurlyeq).$$

This topology is metrizable by a local distance *d*.

Theorem

The metric space (\tilde{S}_{\bullet}, d) is a compact Polish space, *i.e.*, compact, separable and complete. Moreover it contains the space S_{\bullet} of finite rooted permutation as a dense subset.

Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{\text{occ}}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

2. Local limits:

Limiting objects: ? Corresponding statistic: ? Concrete examples: ? Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{\text{occ}}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

2. Local limits:

Limiting objects: Rooted permutations *i.e.*, total orders Corresponding statistic: ? Concrete examples: ? Local convergence: the *consecutive occurrences* characterization

QUESTION: How do we make this choice?

QUESTION: How do we make this choice?

ANSWER: Uniformly at random among the indices of the permutation.

QUESTION: How do we make this choice?

ANSWER: Uniformly at random among the indices of the permutation.

Observation

In this way, a fixed permutation σ naturally identifies a random variable (σ , i) with values in the set S_{\bullet} .

WEAK-LOCAL CONVERGENCE: THE DETERMINISTIC CASE

Definition

We say that a sequence $(\sigma^n)_{n\in\mathbb{N}}$ of elements in SBenjamini–Schramm converges to a random rooted permutation σ^{∞} , if

 $(\sigma^n, i_n) \xrightarrow{law} \sigma^{\infty}$, w.r.t. the local distance d.

We write $\sigma^n \xrightarrow{BS} \boldsymbol{\sigma}^{\infty}$ instead of $(\sigma^n, \boldsymbol{i}_n) \xrightarrow{law} \boldsymbol{\sigma}^{\infty}$.

WEAK-LOCAL CONVERGENCE: THE DETERMINISTIC CASE

Definition

We say that a sequence $(\sigma^n)_{n\in\mathbb{N}}$ of elements in SBenjamini–Schramm converges to a random rooted permutation σ^{∞} , if

 $(\sigma^n, i_n) \xrightarrow{law} \sigma^{\infty}$, w.r.t. the local distance d.

We write $\sigma^n \xrightarrow{BS} \boldsymbol{\sigma}^{\infty}$ instead of $(\sigma^n, \boldsymbol{i}_n) \xrightarrow{law} \boldsymbol{\sigma}^{\infty}$.

Theorem [B.]

For any $n \in \mathbb{N}$, let σ^n be a permutation of size n. TFAE:

(a) $\sigma^n \xrightarrow{BS} \sigma^{\infty}$, for some random rooted infinite permutation σ^{∞} .

(b) There exists an infinite vector of non-negative real numbers (Δ_π)_{π∈S} such that

 $\widetilde{c\text{-occ}}(\pi,\sigma^n) \to \Delta_{\pi}$, for all patterns $\pi \in \mathcal{S}$.

WEAK-LOCAL CONVERGENCE: THE DETERMINISTIC CASE

Definition

We say that a sequence $(\sigma^n)_{n\in\mathbb{N}}$ of elements in SBenjamini–Schramm converges to a random rooted permutation σ^{∞} , if

 $(\sigma^n, i_n) \xrightarrow{law} \sigma^{\infty}$, w.r.t. the local distance d.

We write $\sigma^n \xrightarrow{BS} \boldsymbol{\sigma}^{\infty}$ instead of $(\sigma^n, \boldsymbol{i}_n) \xrightarrow{law} \boldsymbol{\sigma}^{\infty}$.

Theorem [B.]

For any $n \in \mathbb{N}$, let σ^n be a permutation of size n. TFAE:

(a) $\sigma^n \xrightarrow{BS} \sigma^{\infty}$, for some random rooted infinite permutation σ^{∞} .

(b) There exists an infinite vector of non-negative real numbers (Δ_π)_{π∈S} such that

 $\widetilde{c\text{-occ}}(\pi,\sigma^n) \to \Delta_{\pi}$, for all patterns $\pi \in \mathcal{S}$.

Link: $\mathbb{P}(r_h(\sigma^{\infty}) = (\pi, h+1)) = \Delta_{\pi}$, for all $h \in \mathbb{N}$, all $\pi \in S^{2h+1}$.

Theorem [B.] If $(\sigma^n)_{n \in \mathbb{N}}$ is a sequence of deterministic permutations: BS: $\sigma^n \xrightarrow{\text{BS}} \sigma^{\infty} \iff \widetilde{\text{C-OCC}}(\pi, \sigma^n) \to \Delta_{\pi}, \forall \pi \in S$

Theorem [B.] If $(\sigma^n)_{n \in \mathbb{N}}$ is a sequence of deterministic permutations: BS: $\sigma^n \xrightarrow{\text{BS}} \sigma^{\infty} \iff \widetilde{\text{C-OCC}}(\pi, \sigma^n) \to \Delta_{\pi}, \forall \pi \in S$ If $(\sigma^n)_{n \in \mathbb{N}}$ is a sequence of random permutations: aBS: $\sigma^n \xrightarrow{aBS} \sigma^{\infty} \iff \mathbb{E}[\widetilde{c} \cdot \operatorname{occ}(\pi, \sigma^n)] \to \Delta_{\pi}, \forall \pi \in S$ Theorem [B.] If $(\sigma^n)_{n \in \mathbb{N}}$ is a sequence of deterministic permutations: BS: $\sigma^n \xrightarrow{\text{BS}} \sigma^\infty \iff \widetilde{c \text{-} \operatorname{OCC}}(\pi, \sigma^n) \to \Delta_{\pi}, \forall \pi \in S$ If $(\sigma^n)_{n \in \mathbb{N}}$ is a sequence of random permutations: aBS: $\sigma^n \xrightarrow{aBS} \sigma^{\infty} \iff \mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to \Delta_{\pi}, \forall \pi \in S$ qBS: $\sigma^n \xrightarrow{qBS} \mu^\infty \iff (\widetilde{c\text{-}occ}(\pi, \sigma^n))_{\pi \in S} \xrightarrow{law} (\Lambda_{\pi})_{\pi \in S}$ w.r.t. the product topology

- Study limits of random permutations when the size tends to infinity
 - 1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: separable permutations, substitution-closed classes, ...

2. Local limits:

Limiting objects: Rooted permutations

Corresponding statistic: ?

Concrete examples: ?

- Study limits of random permutations when the size tends to infinity
 - 1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: separable permutations, substitution-closed classes, ...

2. Local limits:

Limiting objects: Rooted permutations Corresponding statistic: $c - occ(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ? Local limit for uniform 231-avoiding permutations

Definition

For all n > 0 we define the following probability distribution on Av^n (231),

$$P_{231}(\pi) := \frac{2^{|LRMax(\pi)| + |RLMax(\pi)|}}{2^{2|\pi|}}, \text{ for all } \pi \in \operatorname{Av}^{n}(231)$$

Theorem [B.]

Let σ^n be a uniform random permutation in Av^n (231) for all $n \in \mathbb{N}$, then

$$\widetilde{c\text{-occ}}(\pi, \sigma^n) \stackrel{\text{Prob}}{\longrightarrow} P_{231}(\pi), \text{ for all } \pi \in Av(231).$$

Theorem [B.]

Let σ^n be a uniform random permutation in Av^n (231) for all $n \in \mathbb{N}$, then

$$\widetilde{c\text{-occ}}(\pi, \sigma^n) \xrightarrow{\text{Prob}} P_{231}(\pi), \text{ for all } \pi \in Av(231).$$

Corollary

There exists a random infinite rooted permutation σ_{231}^{∞} such that for all $h \in \mathbb{N}$,

$$\mathbb{P}ig(r_h(oldsymbol{\sigma}_{231}^\infty)=(\pi,h+1)ig)= extsf{P}_{231}(\pi), \hspace{1em} extsf{for all} \hspace{1em} \pi\in\mathcal{S}^{2h+1},$$

and

$$\sigma^n \stackrel{qBS}{\longrightarrow} \mathcal{L}(\sigma_{231}^\infty)$$
 and $\sigma^n \stackrel{qBS}{\longrightarrow} \sigma_{231}^\infty$.

 \leftrightarrow

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to P_{231}(\pi)$, for all $\pi \in Av(231)$

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to P_{231}(\pi)$, for all $\pi \in Av(231)$

 Thanks to the previous bijection, instead of considering a sequence of uniform 231-avoiding permutations of size n, we can consider a sequence of uniform binary trees T_n with n nodes;

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to P_{231}(\pi)$, for all $\pi \in Av(231)$

- Thanks to the previous bijection, instead of considering a sequence of uniform 231-avoiding permutations of size *n*, we can consider a sequence of uniform binary trees *T_n* with *n* nodes;
- We also consider a family of binary Galton-Watson trees T_{δ} with offspring distribution $\eta(\delta), \delta \in (0, 1)$.

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to P_{231}(\pi)$, for all $\pi \in Av(231)$

- Thanks to the previous bijection, instead of considering a sequence of uniform 231-avoiding permutations of size *n*, we can consider a sequence of uniform binary trees *T_n* with *n* nodes;
- We also consider a family of binary Galton-Watson trees T_{δ} with offspring distribution $\eta(\delta), \delta \in (0, 1)$.

Remark

A binary Galton-Watson tree is a <u>random</u> rooted tree defined as follow:

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to P_{231}(\pi)$, for all $\pi \in Av(231)$

- Thanks to the previous bijection, instead of considering a sequence of uniform 231-avoiding permutations of size *n*, we can consider a sequence of uniform binary trees *T_n* with *n* nodes;
- We also consider a family of binary Galton-Watson trees T_{δ} with offspring distribution $\eta(\delta), \delta \in (0, 1)$.

Remark

A binary Galton-Watson tree is a <u>random</u> rooted tree defined as follow:

• We consider a probability distribution η on $\{0, L, R, 2\}$ or, equivalently, a random variable $\boldsymbol{\xi}$ with distribution η .

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \rightarrow P_{231}(\pi)$, for all $\pi \in Av(231)$

- Thanks to the previous bijection, instead of considering a sequence of uniform 231-avoiding permutations of size *n*, we can consider a sequence of uniform binary trees *T_n* with *n* nodes;
- We also consider a family of binary Galton-Watson trees T_{δ} with offspring distribution $\eta(\delta), \delta \in (0, 1)$.

Remark

A binary Galton-Watson tree is a <u>random</u> rooted tree defined as follow:

- We consider a probability distribution η on $\{0, L, R, 2\}$ or, equivalently, a random variable $\boldsymbol{\xi}$ with distribution η .
- We build the random tree *T* recursively:
 - 1. We start with the root;
 - 2. We give to each node children according to an independent copy of $\pmb{\xi}$.
STEPS OF THE PROOF

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to P_{231}(\pi)$, for all $\pi \in Av(231)$

• We relate T_{δ} and the sequence $(T_n)_{n\in\mathbb{N}}$ by

$$\mathbb{E}[F(T_{\delta})] = \sum_{n=1}^{+\infty} \mathbb{E}[F(T_n)] \cdot P(|T_{\delta}| = n)$$
$$= \frac{1+\delta}{1-\delta} \sum_{n=1}^{+\infty} \mathbb{E}[F(T_n)] \cdot C_n \cdot \left(\frac{1-\delta^2}{4}\right)^n;$$

STEPS OF THE PROOF

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \to P_{231}(\pi)$, for all $\pi \in Av(231)$

• We relate T_{δ} and the sequence $(T_n)_{n\in\mathbb{N}}$ by

$$\mathbb{E}[F(T_{\delta})] = \sum_{n=1}^{+\infty} \mathbb{E}[F(T_n)] \cdot P(|T_{\delta}| = n)$$
$$= \frac{1+\delta}{1-\delta} \sum_{n=1}^{+\infty} \mathbb{E}[F(T_n)] \cdot C_n \cdot \left(\frac{1-\delta^2}{4}\right)^n$$

 \cdot With a long recursion we prove that

$$\mathbb{E}\big[c\text{-}occ(\pi, T_{\delta})\big] = \delta^{-1} \cdot P_{231}(\pi) + O(1);$$

STEPS OF THE PROOF

FIRST STEP: Prove that $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma^n)] \rightarrow P_{231}(\pi)$, for all $\pi \in Av(231)$

• We relate T_{δ} and the sequence $(T_n)_{n\in\mathbb{N}}$ by

$$\mathbb{E}[F(T_{\delta})] = \sum_{n=1}^{+\infty} \mathbb{E}[F(T_n)] \cdot P(|T_{\delta}| = n)$$
$$= \frac{1+\delta}{1-\delta} \sum_{n=1}^{+\infty} \mathbb{E}[F(T_n)] \cdot C_n \cdot \left(\frac{1-\delta^2}{4}\right)^n$$

• With a long recursion we prove that

$$\mathbb{E}\big[c\text{-}occ(\pi, T_{\delta})\big] = \delta^{-1} \cdot P_{231}(\pi) + O(1);$$

• Applying singularity analysis and reusing the bijection: $\mathbb{E}[\widetilde{c-occ}(\pi, \sigma_n)] \rightarrow P_{231}(\pi), \text{ for all } \pi \in Av(231).$

SECOND STEP: Prove that $\widetilde{c \text{-}occ}(\pi, \sigma^n) \xrightarrow{\text{Prob}} P_{231}(\pi)$, for all $\pi \in Av(231)$

SECOND STEP: Prove that $\widetilde{c \text{-}occ}(\pi, \sigma^n) \xrightarrow{\text{Prob}} P_{231}(\pi)$, for all $\pi \in \text{Av}(231)$

• We study the second moment $\mathbb{E}[c - occ(\pi, \sigma^n)^2]$ using similar techniques and we obtain,

 $\mathbb{E}[\widetilde{c\text{-}occ}(\pi, \sigma^n)^2] \to P_{231}(\pi)^2$, for all $\pi \in Av(231)$;

SECOND STEP: Prove that $\widetilde{c \text{-}occ}(\pi, \sigma^n) \xrightarrow{\text{Prob}} P_{231}(\pi)$, for all $\pi \in \text{Av}(231)$

• We study the second moment $\mathbb{E}[\widetilde{c \cdot occ}(\pi, \sigma^n)^2]$ using similar techniques and we obtain,

$$\mathbb{E}[\widetilde{c\text{-}occ}(\pi, \sigma^n)^2] \to P_{231}(\pi)^2$$
, for all $\pi \in Av(231)$;

 \cdot Therefore

$$\operatorname{Var}(\widetilde{c\text{-}occ}(\pi, \sigma^n)) \to 0$$
, for all $\pi \in \operatorname{Av}(231)$.

We finally apply the Second moment method.

Thanks for your attention

Article and slides available at: http://www.jacopoborga.com (from midnight also on arXiv)

Questions?

Back-up slides

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

• We consider the following Boltzmann distribution on Av(231) :

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \quad \text{for all} \quad \pi \in \text{Av}(231), \qquad P(\emptyset) = \frac{1}{2}.$$

• We sample a first non-empty permutation;

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \quad \text{for all} \quad \pi \in \text{Av}(231), \qquad P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \quad \text{for all} \quad \pi \in \text{Av}(231), \qquad P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- \cdot With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- \cdot With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- \cdot With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- \cdot With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- \cdot With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- \cdot With probability 1/2 we do one of the two following construction:

$$P(\pi) = \frac{1}{2} \left(\frac{1}{4}\right)^{|\pi|}, \text{ for all } \pi \in Av(231), P(\emptyset) = \frac{1}{2}.$$

- We sample a first non-empty permutation;
- We root it at its maximum;
- We sample a second (possibly empty) permutation;
- \cdot With probability 1/2 we do one of the two following construction:

Local limit for uniform 321-avoiding permutations

321-AVOIDING PERMUTATIONS

Definition

For all n > 0, we define the following probability distribution on Avⁿ(321),

$$P_{321}(\pi) := \begin{cases} \frac{|\pi|+1}{2|\pi|} & \text{if } \pi = 12...|\pi|, \\ \frac{1}{2|\pi|} & \text{if } c\text{-}occ(21, \pi^{-1}) = \\ 0 & \text{otherwise.} \end{cases}$$

1,

321-AVOIDING PERMUTATIONS

Definition

For all n > 0, we define the following probability distribution on Avⁿ(321),

$$P_{321}(\pi) := \begin{cases} \frac{|\pi|+1}{2|\pi|} \\ \frac{1}{2|\pi|} \\ 0 \end{cases}$$

1 1 1 4

if $\pi = 12...|\pi|$, if *c*-*occ*(21, π^{-1}) = 1, otherwise.

Theorem [B.]

Let σ^n be a uniform random permutation in Av^n (321) for all $n \in \mathbb{N}$, then

$$\widetilde{c\text{-occ}}(\pi, \sigma^n) \stackrel{\text{Prob}}{\longrightarrow} P_{321}(\pi), \text{ for all } \pi \in Av(321).$$

Theorem [B.]

Let σ^n be a uniform random permutation in Av^n (321) for all $n \in \mathbb{N}$, then

$$\widetilde{c\text{-occ}}(\pi, \sigma^n) \xrightarrow{\text{Prob}} P_{321}(\pi)$$
, for all $\pi \in Av(321)$.

Since the limiting objects $(P_{321}(\pi))_{\pi \in Av(231)}$ are deterministic:

Corollary

There exists a random infinite rooted permutation $\sigma_{\rm 321}^\infty$ such that for all $h\in\mathbb{N},$

$$\mathbb{P}ig(r_h(oldsymbol{\sigma}_{321}^\infty)=(\pi,h+1)ig)= extsf{P}_{321}(\pi), \hspace{1em} extsf{for all} \hspace{1em} \pi\in\mathcal{S}^{2h+1},$$

and

$$\sigma^n \stackrel{qBS}{\longrightarrow} \mathcal{L}(\sigma_{321}^\infty)$$
 and $\sigma^n \stackrel{aBS}{\longrightarrow} \sigma_{321}^\infty$.

It is well known that 321-avoiding permutations can be broken into two increasing subsequences, the first above the diagonal and the second below the diagonal:

A BIJECTION BETWEEN 321-AVOIDING PERMUTATIONS & TREES

FIRST STEP: Prove that conditioning on σ_n , looking at a random window of fixed size, when $n \to \infty$, we see the "separating red line" with probability one:

FIRST STEP: Prove that conditioning on σ_n , looking at a random window of fixed size, when $n \to \infty$, we see the "separating red line" with probability one:

FIRST STEP: Prove that conditioning on σ_n , looking at a random window of fixed size, when $n \to \infty$, we see the "separating red line" with probability one:

• [Hoffman, Rizzolo, Slivken]: The distance from each subsequence to the diagonal is of order $\sqrt{n} \cdot e$;

STEPS OF THE PROOF

SECOND STEP: Prove that conditioning on σ_n , looking at a random window of fixed size, in the limit each point is above or below the red line with probality 1/2 independently from the other points.

STEPS OF THE PROOF

SECOND STEP: Prove that conditioning on σ_n , looking at a random window of fixed size, in the limit each point is above or below the red line with probality 1/2 independently from the other points.

• We use the bijection between 321-avoiding permutations and ordered rooted trees that maps the lower subsequence to the leaves of the tree;

STEPS OF THE PROOF

SECOND STEP: Prove that conditioning on σ_n , looking at a random window of fixed size, in the limit each point is above or below the red line with probality 1/2 independently from the other points.

- We use the bijection between 321-avoiding permutations and ordered rooted trees that maps the lower subsequence to the leaves of the tree;
- We adapt a local limit result for Galton-Watson trees to know the positions of the leaves.

The construction of the random order $\sigma_{ m 321}^{\infty}$.

• We consider the classical total order on \mathbb{Z} ;

 $\ldots -9 \ -8 \ -7 \ -6 \ -5 \ -4 \ -3 \ -2 \ -1 \ \ 0 \ \ 1 \ \ 2 \ \ 3 \ \ 4 \ \ 5 \ \ 6 \ \ 7 \ \ 8 \ \ 9 \ldots$

The construction of the random order σ_{321}^{∞} .

- \cdot We consider the classical total order on \mathbb{Z} ;
- We paint, uniformly and independently, each integer number either in orange or in blue;

 $\ldots -9 \ -8 \ -7 \ -6 \ -5 \ -4 \ -3 \ -2 \ -1 \ \ 0 \ \ 1 \ \ 2 \ \ 3 \ \ 4 \ \ 5 \ \ 6 \ \ 7 \ \ 8 \ \ 9 \ldots$

The construction of the random order σ_{321}^{∞} .

- \cdot We consider the classical total order on \mathbb{Z} ;
- We paint, uniformly and independently, each integer number either in orange or in blue;

 $\dots -9$ - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 \dots

The construction of the random order σ_{321}^{∞} .

- We consider the classical total order on \mathbb{Z} ;
- We paint, uniformly and independently, each integer number either in orange or in blue;
- We move the orange numbers at the beginning of the new random order;

The construction of the random order $\sigma^\infty_{ m 321}.$

- We consider the classical total order on \mathbb{Z} ;
- We paint, uniformly and independently, each integer number either in orange or in blue;
- We move the orange numbers at the beginning of the new random order;
- \cdot We move the blue numbers at the end of the new random order.

The construction of the random order $\sigma^\infty_{ m 321}.$

- We consider the classical total order on \mathbb{Z} ;
- We paint, uniformly and independently, each integer number either in orange or in blue;
- We move the orange numbers at the beginning of the new random order;
- \cdot We move the blue numbers at the end of the new random order.
- The new random order has the same distribution as σ_{321}^{∞} .

OUR GOAL

Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

2. Local limits:

Limiting objects: Rooted permutations + shift-invariant property Corresponding statistic: $\widetilde{c \cdot occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ?

OUR GOAL

Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

2. Local limits:

Limiting objects: Rooted permutations + shift-invariant property **Corresponding statistic**: $\widetilde{c \cdot occ}(\pi, \sigma)$, for all $\pi \in S$ **Concrete examples**: ρ -avoiding permutations for $|\pi| = 3$

OUR GOAL

Study limits of random permutations when the size tends to infinity

1. Scaling limits:

Limiting objects: Permutons Corresponding statistic: $\widetilde{occ}(\pi, \sigma)$, for all $\pi \in S$ Concrete examples: ρ -avoiding permutations for $|\pi| = 3$, separable permutations, substitution-closed classes, Mallows permutations, ...

2. Local limits:

Limiting objects: Rooted permutations + shift-invariant property **Corresponding statistic**: $\widetilde{c \cdot occ}(\pi, \sigma)$, for all $\pi \in S$ **Concrete examples**: ρ -avoiding permutations for $|\pi| = 3$ **Future projects**: Substitution-closed permutation classes(?), Mallows permutations(?), ... The trees that we consider are rooted and ordered.

The trees that we consider are rooted and ordered. Recall that a tree is rooted if one node is distinguished as the root.

The trees that we consider are rooted and ordered. Recall that a tree is rooted if one node is distinguished as the root. Recall further that a rooted tree is ordered if the children of each node are ordered in a sequence.

A Galton-Watson tree is a random rooted tree defined as follow:

A Galton-Watson tree is a random rooted tree defined as follow:

• We consider a probability distribution $(\eta_k)_{k=0}^{\infty}$ on $\mathbb{Z}_{\geq 0}$, or, equivalently, a random variable ξ with distribution $(\eta_k)_{k=0}^{\infty}$;

A Galton-Watson tree is a <u>random</u> rooted tree defined as follow:

- We consider a probability distribution $(\eta_k)_{k=0}^{\infty}$ on $\mathbb{Z}_{\geq 0}$, or, equivalently, a random variable ξ with distribution $(\eta_k)_{k=0}^{\infty}$;
- We build the random tree *T* recursively:
 - 1. We start with the root;
 - 2. We give to each node a number of children that is an independent copy of ξ .

A Galton-Watson tree is a <u>random</u> rooted tree defined as follow:

- We consider a probability distribution $(\eta_k)_{k=0}^{\infty}$ on $\mathbb{Z}_{\geq 0}$, or, equivalently, a random variable ξ with distribution $(\eta_k)_{k=0}^{\infty}$;
- We build the random tree *T* recursively:
 - 1. We start with the root;
 - 2. We give to each node a number of children that is an independent copy of ξ .

Recall that the Galton–Watson tree is called subcritical, critical or supercritical when the expected number of children $\mathbb{E}[\xi] < 1$, $\mathbb{E}[\xi] = 1$ or $\mathbb{E}[\xi] > 1$. It is a standard basic fact of branching process theory that *T* is *a.s.* finite if $\mathbb{E}[\xi] \le 1$, but *T* is infinite with positive probability if $\mathbb{E}[\xi] > 1$ (the supercritical case).

Local limit for uniform ρ -avoiding permutations with $|\rho| = 3$

We say that a permutation σ avoids a pattern $\rho \in S$ if

 $\operatorname{occ}(\rho,\sigma) = 0.$

We underline that the definition of ρ -avoiding permutation refers to patterns and <u>not</u> to consecutive patterns. Let $\operatorname{Av}^n(\rho)$ be the set of ρ -avoiding permutations of size n and $\operatorname{Av}(\rho) \coloneqq \bigcup_{n \in \mathbb{N}} \operatorname{Av}^n(\rho)$.

We say that a permutation σ avoids a pattern $\rho \in S$ if

 $\operatorname{occ}(\rho,\sigma) = 0.$

We underline that the definition of ρ -avoiding permutation refers to patterns and <u>not</u> to consecutive patterns. Let $\operatorname{Av}^n(\rho)$ be the set of ρ -avoiding permutations of size n and $\operatorname{Av}(\rho) \coloneqq \bigcup_{n \in \mathbb{N}} \operatorname{Av}^n(\rho)$.

We want to study local limits for uniform random permutations in $\operatorname{Av}(\rho)$ for

We say that a permutation σ avoids a pattern $\rho \in S$ if

 $\operatorname{occ}(\rho,\sigma) = 0.$

We underline that the definition of ρ -avoiding permutation refers to patterns and <u>not</u> to consecutive patterns. Let $\operatorname{Av}^n(\rho)$ be the set of ρ -avoiding permutations of size n and $\operatorname{Av}(\rho) \coloneqq \bigcup_{n \in \mathbb{N}} \operatorname{Av}^n(\rho)$.

We want to study local limits for uniform random permutations in $\operatorname{Av}(\rho)$ for

We say that a permutation σ avoids a pattern $\rho \in S$ if

 $\operatorname{occ}(\rho,\sigma) = 0.$

We underline that the definition of ρ -avoiding permutation refers to patterns and <u>not</u> to consecutive patterns. Let $\operatorname{Av}^n(\rho)$ be the set of ρ -avoiding permutations of size n and $\operatorname{Av}(\rho) := \bigcup_{n \in \mathbb{N}} \operatorname{Av}^n(\rho)$.

We want to study local limits for uniform random permutations in $\operatorname{Av}(\rho)$ for

Definition

A random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ has the shift invariant property if for all patterns $\pi \in S$,

$$\mathbb{P}(\pi_1 \preccurlyeq \pi_2 \preccurlyeq ... \preccurlyeq \pi_k) = \mathbb{P}(\pi_1 + \mathsf{S} \preccurlyeq \pi_2 + \mathsf{S} \preccurlyeq ... \preccurlyeq \pi_k + \mathsf{S}), \quad \forall \mathsf{S} \in \mathbb{Z}.$$

Definition

A random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ has the shift invariant property if for all patterns $\pi \in S$,

 $\mathbb{P}(\pi_1 \preccurlyeq \pi_2 \preccurlyeq \ldots \preccurlyeq \pi_k) = \mathbb{P}(\pi_1 + \mathsf{S} \preccurlyeq \pi_2 + \mathsf{S} \preccurlyeq \ldots \preccurlyeq \pi_k + \mathsf{S}), \quad \forall \mathsf{S} \in \mathbb{Z}.$

Example

Let $(\mathbb{Z}, \preccurlyeq)$ be a random shift-invariant rooted permutation. If $\pi = 132$ then

 $\mathbb{P}(1 \preccurlyeq 3 \preccurlyeq 2)$

Definition

A random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ has the shift invariant property if for all patterns $\pi \in S$,

$$\mathbb{P}(\pi_1 \preccurlyeq \pi_2 \preccurlyeq \ldots \preccurlyeq \pi_k) = \mathbb{P}(\pi_1 + \mathsf{S} \preccurlyeq \pi_2 + \mathsf{S} \preccurlyeq \ldots \preccurlyeq \pi_k + \mathsf{S}), \quad \forall \mathsf{S} \in \mathbb{Z}.$$

Example

Let $(\mathbb{Z}, \preccurlyeq)$ be a random shift-invariant rooted permutation. If $\pi = 132$ then

$$\mathbb{P}(1 \preccurlyeq 3 \preccurlyeq 2) = \mathbb{P}(2 \preccurlyeq 4 \preccurlyeq 3) = \dots$$

Definition

A random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ has the shift invariant property if for all patterns $\pi \in S$,

 $\mathbb{P}(\pi_1 \preccurlyeq \pi_2 \preccurlyeq \ldots \preccurlyeq \pi_k) = \mathbb{P}(\pi_1 + \mathsf{S} \preccurlyeq \pi_2 + \mathsf{S} \preccurlyeq \ldots \preccurlyeq \pi_k + \mathsf{S}), \quad \forall \mathsf{S} \in \mathbb{Z}.$

Example

Let $(\mathbb{Z}, \preccurlyeq)$ be a random shift-invariant rooted permutation. If $\pi = 132$ then

 $\cdots = \mathbb{P}(0 \preccurlyeq 2 \preccurlyeq 1) = \mathbb{P}(1 \preccurlyeq 3 \preccurlyeq 2) = \mathbb{P}(2 \preccurlyeq 4 \preccurlyeq 3) = \dots$

Definition

A random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ has the shift invariant property if for all patterns $\pi \in S$,

$$\mathbb{P}(\pi_1 \preccurlyeq \pi_2 \preccurlyeq \ldots \preccurlyeq \pi_k) = \mathbb{P}(\pi_1 + \mathsf{S} \preccurlyeq \pi_2 + \mathsf{S} \preccurlyeq \ldots \preccurlyeq \pi_k + \mathsf{S}), \quad \forall \mathsf{S} \in \mathbb{Z}.$$

Example

Let $(\mathbb{Z}, \preccurlyeq)$ be a random shift-invariant rooted permutation. If $\pi = 132$ then

$$\cdots = \mathbb{P}(0 \preccurlyeq 2 \preccurlyeq 1) = \mathbb{P}(1 \preccurlyeq 3 \preccurlyeq 2) = \mathbb{P}(2 \preccurlyeq 4 \preccurlyeq 3) = \dots$$

Proposition

Let $(\mathbb{Z}, \preccurlyeq)$ be the annealed Benjamini-Schramm limit of a sequence $(\sigma^n)_{n \in \mathbb{N}}$ of random permutations, then $(\mathbb{Z}, \preccurlyeq)$ has the shift invariant property.

QUESTION: Is every shift invariant random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ the annealed Benjamini-Schramm limit of some sequence of random permutations?

QUESTION: Is every shift invariant random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ the annealed Benjamini-Schramm limit of some sequence of random permutations?

Theorem [B.]

Let $(\mathbb{Z}, \preccurlyeq)$ be a random shift-invariant rooted permutation. Then the sequence of random permutations $(\sigma^n)_{n \in \mathbb{N}}$ defined, for all $n \in \mathbb{N}$, by

$$\mathbb{P}(\boldsymbol{\sigma}^n = \pi) = \mathbb{P}(\pi_1 \preccurlyeq \pi_2 \preccurlyeq \dots \preccurlyeq \pi_n), \quad \text{for all} \quad \pi \in \mathcal{S}^n,$$

converges in the annealed Benjamini-Schramm sense to $(\mathbb{Z}, \preccurlyeq)$.

QUESTION: Is every shift invariant random infinite rooted permutation $(\mathbb{Z}, \preccurlyeq)$ the annealed Benjamini-Schramm limit of some sequence of random permutations?

Theorem [B.]

Let $(\mathbb{Z}, \preccurlyeq)$ be a random shift-invariant rooted permutation. Then the sequence of random permutations $(\sigma^n)_{n \in \mathbb{N}}$ defined, for all $n \in \mathbb{N}$, by

$$\mathbb{P}(\boldsymbol{\sigma}^n = \pi) = \mathbb{P}(\pi_1 \preccurlyeq \pi_2 \preccurlyeq \dots \preccurlyeq \pi_n), \quad \text{for all} \quad \pi \in \mathcal{S}^n,$$

converges in the annealed Benjamini-Schramm sense to $(\mathbb{Z}, \preccurlyeq)$.

Curiosity

The corresponding property for graphs is called **unimodularity** and the following problem still open:

Is every unimodular random graph the local limit in distribution of uniformly pointed random graphs? (solved for trees).
Basics on Permutations

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set S^n and $S = \bigcup_{n \in \mathbb{N}} S^n$. NOTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

 $\sigma = 5\ 2\ 4\ 8\ 1\ 6\ 3\ 7$

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

•				

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

•				

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

•				

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

Permutation of size $n \equiv$ Bijection from $[n] = \{1, ..., n\}$ to itself. Set \mathcal{S}^n and $\mathcal{S} = \bigcup_{n \in \mathbb{N}} \mathcal{S}^n$. NOTATION:

GRAPHICAL REPRESENTATION:

• Two lines:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 4 & 8 & 1 & 6 & 3 & 7 \end{pmatrix}$$

• One line:

 $\sigma = 4\ 2\ 5\ 8\ 1\ 6\ 3\ 7$

 $\sigma = 4\;2\;5\;8\;1\;6\;3\;7$

 $\sigma = 4\ 2\ 5\ 8\ 1\ 6\ 3\ 7$

 $\sigma = 4\ 2\ 5\ 8\ 1\ 6\ 3\ 7$

 $\sigma = 4\ 2\ 5\ 8\ 1\ 6\ 3\ 7$

$$\sigma = 4\ 2\ 5\ 8\ 1\ 6\ 3\ 7 \quad \longrightarrow \qquad \operatorname{pat}_{I}(\sigma) = 2413$$

$$I = \{2, 4, 5, 7\}$$

Definition

 π is a pattern of σ if there exists *I* such that $pat_I(\sigma) = \pi$.

$$I = \{4, 5, 6, 7\}$$

Definition

 π is a pattern of σ if there exists *I* such that $pat_I(\sigma) = \pi$.

$$I = \{4, 5, 6, 7\}$$

Definition

 π is a pattern of σ if there exists *I* such that $pat_I(\sigma) = \pi$.

$$I = \{4, 5, 6, 7\}$$

Definition

 π is a pattern of σ if there exists *I* such that $\text{pat}_{I}(\sigma) = \pi$. Moreover, if *I* is an <u>interval</u> then π is a <u>consecutive pattern</u> in σ .

Definition

We denote by $occ(\pi, \sigma)$ the number of occurrences of a pattern π in σ . More formally, if $\pi \in S^k$ and $\sigma \in S^n$,

 $occ(\pi, \sigma) = Card\{l \in [n] \text{ of cardinality } k \text{ such that } pat_l(\sigma) = \pi\}.$

Moreover we denote by $\widetilde{occ}(\pi, \sigma)$ the proportion of occurrences of a pattern π in σ namely

$$\widetilde{\operatorname{occ}}(\pi,\sigma) = \frac{\operatorname{occ}(\pi,\sigma)}{\binom{n}{k}}.$$

Definition

We denote by $c \operatorname{-occ}(\pi, \sigma)$ the number of <u>consecutive</u> occurrences of a pattern π in σ . More formally, if $\pi \in S^k$ and $\sigma \in S^n$,

c- $occ(\pi, \sigma) = Card\{I \subset [n] | I \text{ is an } interval, Card(I) = k, pat_I(\sigma) = \pi\}.$

Moreover we denote by $\widehat{c \text{-occ}}(\pi, \sigma)$ the proportion of <u>consecutive</u> occurrences of a pattern π in σ namely

$$\widetilde{c\text{-}occ}(\pi,\sigma) = \frac{c\text{-}occ(\pi,\sigma)}{n}$$

Definition

We denote by $c \operatorname{-occ}(\pi, \sigma)$ the number of <u>consecutive</u> occurrences of a pattern π in σ . More formally, if $\pi \in S^k$ and $\sigma \in S^n$,

c- $occ(\pi, \sigma) = Card\{I \subset [n] | I \text{ is an } interval, Card(I) = k, pat_I(\sigma) = \pi\}.$

Moreover we denote by $\widehat{c \text{-occ}}(\pi, \sigma)$ the proportion of <u>consecutive</u> occurrences of a pattern π in σ namely

 $\sigma^n \xrightarrow{\text{BS}} \sigma^\infty \stackrel{def}{\iff} (\sigma^n, i_n) \xrightarrow{law} \sigma^\infty.$

$$\sigma^n \xrightarrow{BS} \sigma^{\infty} \stackrel{def}{\iff} (\sigma^n, i_n) \xrightarrow{law} \sigma^{\infty}.$$

QUESTION: What happens if the sequence $(\sigma^n)_{n \in \mathbb{N}}$ is random?

$$\sigma^n \xrightarrow{BS} \sigma^{\infty} \stackrel{def}{\iff} (\sigma^n, i_n) \xrightarrow{law} \sigma^{\infty}.$$

Definition

We say that a sequence $(\sigma^n)_{n \in \mathbb{N}}$ of random permutations converges in the annealed Benjamini-Schramm sense to a random rooted permutation σ^{∞} if

$$(\sigma^n, i_n)_{n \in \mathbb{N}} \stackrel{law}{\longrightarrow} \sigma^{\infty}, \quad$$
 w.r.t. the local distance d.

$$\sigma^n \xrightarrow{BS} \sigma^{\infty} \stackrel{def}{\iff} (\sigma^n, i_n) \xrightarrow{law} \sigma^{\infty}.$$

Definition

We say that a sequence $(\sigma^n)_{n \in \mathbb{N}}$ of random permutations converges in the annealed Benjamini-Schramm sense to a random rooted permutation σ^{∞} if

$$({m\sigma}^n, {m i}_n)_{n\in \mathbb{N}} \stackrel{law}{\longrightarrow} {m\sigma}^\infty, \quad$$
 w.r.t. the local distance d.

We say that a sequence $(\sigma^n)_{n \in \mathbb{N}}$ of random permutation converges in the quenched Benjamini-Schramm sense to a random measure μ^{∞} on \tilde{S}_{\bullet} if

 $\mathcal{L}((\sigma^n,i_n)|\sigma^n) \stackrel{law}{\longrightarrow} \mu^\infty, \quad ext{w.r.t. the weak topology induced by d.}$

$$\sigma^n \xrightarrow{BS} \sigma^{\infty} \stackrel{def}{\iff} (\sigma^n, i_n) \xrightarrow{law} \sigma^{\infty}.$$

Definition

We say that a sequence $(\sigma^n)_{n \in \mathbb{N}}$ of random permutations converges in the annealed Benjamini-Schramm sense to a random rooted permutation σ^{∞} if

$$(oldsymbol{\sigma}^n, oldsymbol{i}_n)_{n\in\mathbb{N}} \stackrel{law}{\longrightarrow} oldsymbol{\sigma}^\infty, \quad$$
 w.r.t. the local distance d.

We say that a sequence $(\sigma^n)_{n \in \mathbb{N}}$ of random permutation converges in the quenched Benjamini-Schramm sense to a <u>random measure</u> μ^{∞} on \tilde{S}_{\bullet} if

 $\mathcal{L}((\sigma^n,i_n)|\sigma^n) \stackrel{law}{\longrightarrow} \mu^\infty, \quad ext{w.r.t. the weak topology induced by d.}$

We write $\sigma^n \stackrel{aBS}{\longrightarrow} \sigma^\infty$ and $\sigma^n \stackrel{qBS}{\longrightarrow} \mu^\infty$.