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Our goal

Study limits of random permutations when the size tends to infinity

1. Scaling limits:
Limiting objects: Permutons
Corresponding statistic: õcc(π, σ), for all π ∈ S
Concrete examples: ρ-avoiding permutations for |π| = 3,
separable permutations, substitution-closed classes, Mallows
permutations, ...
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Concrete examples: ρ-avoiding permutations for |π| = 3,
separable permutations, substitution-closed classes, Mallows
permutations, ...

2. Local limits:
Limiting objects: ?
Corresponding statistic: ?
Concrete examples: ?
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The space of rooted permutations



Finite rooted permutations

σ = 4 2 5 8 3 6 1 7

` ≤σ,i j ⇔ σ`+i ≤ σj+i

i = 5

Definition
A finite rooted permutation is a pair (σ, i), where σ ∈ Sn and i ∈ [n].
We denote the set of finite rooted permutations by S•.

We
associate a total order (Aσ,i,4σ,i) to a rooted permutation (σ, i).
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Infinite rooted permutations

Definition
We call infinite rooted permutation a pair (A,4) where A is an
infinite interval of integers containing 0 and 4 is a total order on A.
We denote the set of infinite rooted permutations by S∞

• .

We underline that infinite rooted permutations can be thought as
rooted at 0.

We set
S̃• := S• ∪ S∞

• ,

namely, the set of (possibly infinite) rooted permutations.
GOAL: Define a notion of local convergence in S̃• and study limits of
random permutations when the size tends to infinity.
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Restriction function around the root

σ = 4 2 5 8 3 6 1 7

i = 5

2 ≤σ,i −3 ≤σ,i 0 ≤σ,i −4 ≤σ,i −2 ≤σ,i 1 ≤σ,i 3 ≤σ,i −1

r2

2 ≤σ,i 0 ≤σ,i −2 ≤σ,i 1 ≤σ,i −1

Definition
The restriction function around the root is defined, for every h ∈ N,
by

rh : S̃• −→ S•

(A, 4) 7→
(
A ∩ [−h,h],4

)
.
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Local distance for S̃•

Definition
We say that a sequence (An,4n)n∈N of rooted permutations in S̃• is
locally convergent to an element (A,4) ∈ S̃•, if for all H > 0 there
exists N ∈ N such that for all n ≥ N,

rH(An,4n) = rH(A,4).

This topology is metrizable by a local distance d.

Theorem
The metric space (S̃•,d) is a compact Polish space, i.e., compact,
separable and complete. Moreover it contains the space S• of finite
rooted permutation as a dense subset.
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2. Local limits:
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Corresponding statistic: ?
Concrete examples: ?

7



Local convergence:
the consecutive occurrences
characterization



Local convergence

We want to study limits of unrooted permutations w.r.t. the local
distance, therefore we need to choose a root.

QUESTION: How do we make this choice?

ANSWER: Uniformly at random among the indices of the permutation.

Observation
In this way, a fixed permutation σ naturally identifies a random
variable (σ, i) with values in the set S•.
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Weak-local convergence: the deterministic case

Definition
We say that a sequence (σn)n∈N of elements in S
Benjamini–Schramm converges to a random rooted permutation
σ∞, if

(σn, in) law−→ σ∞, w.r.t. the local distance d.

We write σn
BS−→ σ∞ instead of (σn, in) law−→ σ∞.

Theorem [B.]
For any n ∈ N, let σn be a permutation of size n. TFAE:

(a) σn
BS−→ σ∞, for some random rooted infinite permutation σ∞.

(b) There exists an infinite vector of non-negative real numbers
(∆π)π∈S such that

c̃-occ(π, σn) → ∆π, for all patterns π ∈ S.

Link: P
(
rh(σ∞) = (π,h+ 1)

)
= ∆π, for all h ∈ N, all π ∈ S2h+1.
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Weak-local convergence: deterministic & random case

Theorem [B.]
If (σn)n∈N is a sequence of deterministic permutations:

BS: σn
BS−→ σ∞ ⇐⇒ c̃-occ(π, σn) → ∆π, ∀π ∈ S

If (σn)n∈N is a sequence of random permutations:

aBS: σn aBS−→ σ∞ ⇐⇒ E[c̃-occ(π,σn)] → ∆π, ∀π ∈ S

qBS: σn qBS−→ µ∞ ⇐⇒
(
c̃-occ(π,σn)

)
π∈S

law−→ (Λπ)π∈S

w.r.t. the product topology
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Our goal

• Study limits of random permutations when the size tends to
infinity
1. Scaling limits:
Limiting objects: Permutons
Corresponding statistic: õcc(π, σ), for all π ∈ S
Concrete examples: separable permutations, substitution-closed
classes, ...

2. Local limits:
Limiting objects: Rooted permutations
Corresponding statistic: ?
Concrete examples: ?
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Concrete examples: separable permutations, substitution-closed
classes, ...

2. Local limits:
Limiting objects: Rooted permutations
Corresponding statistic: c̃-occ(π, σ), for all π ∈ S
Concrete examples: ?

11



Local limit for uniform
231-avoiding permutations



231-avoiding permutations

Definition
For all n > 0 we define the following probability distribution on
Avn(231),

P231(π) :=
2|LRMax(π)|+|RLMax(π)|

22|π|
, for all π ∈ Avn(231).
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231-avoiding permutations

Theorem [B.]

Let σn be a uniform random permutation in Avn(231) for all n ∈ N,

then
c̃-occ(π,σn)

Prob−→ P231(π), for all π ∈ Av(231).

Corollary
There exists a random infinite rooted permutation σ∞

231 such that
for all h ∈ N,

P
(
rh(σ∞

231) = (π,h+ 1)
)
= P231(π), for all π ∈ S2h+1,

and
σn qBS−→ L(σ∞

231) and σn aBS−→ σ∞
231.
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σ = 4 1 3 2 10 5 7 6 9 8
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Steps of the proof

FIRST STEP: Prove that E
[
c̃-occ(π,σn)

]
→ P231(π), for all π ∈ Av(231)

• Thanks to the previous bijection, instead of considering a
sequence of uniform 231-avoiding permutations of size n, we can
consider a sequence of uniform binary trees Tn with n nodes;

• We also consider a family of binary Galton-Watson trees Tδ with
offspring distribution η(δ), δ ∈ (0, 1).

Remark

A binary Galton-Watson tree is a random rooted tree defined as
follow:

• We consider a probability distribution η on {0, L,R, 2} or,
equivalently, a random variable ξ with distribution η.

• We build the random tree T recursively:
1. We start with the root;
2. We give to each node children according to an independent copy
of ξ.

15



Steps of the proof

FIRST STEP: Prove that E
[
c̃-occ(π,σn)

]
→ P231(π), for all π ∈ Av(231)

• Thanks to the previous bijection, instead of considering a
sequence of uniform 231-avoiding permutations of size n, we can
consider a sequence of uniform binary trees Tn with n nodes;

• We also consider a family of binary Galton-Watson trees Tδ with
offspring distribution η(δ), δ ∈ (0, 1).

Remark

A binary Galton-Watson tree is a random rooted tree defined as
follow:

• We consider a probability distribution η on {0, L,R, 2} or,
equivalently, a random variable ξ with distribution η.

• We build the random tree T recursively:
1. We start with the root;
2. We give to each node children according to an independent copy
of ξ.

15



Steps of the proof

FIRST STEP: Prove that E
[
c̃-occ(π,σn)

]
→ P231(π), for all π ∈ Av(231)

• Thanks to the previous bijection, instead of considering a
sequence of uniform 231-avoiding permutations of size n, we can
consider a sequence of uniform binary trees Tn with n nodes;

• We also consider a family of binary Galton-Watson trees Tδ with
offspring distribution η(δ), δ ∈ (0, 1).

Remark

A binary Galton-Watson tree is a random rooted tree defined as
follow:

• We consider a probability distribution η on {0, L,R, 2} or,
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• We build the random tree T recursively:
1. We start with the root;
2. We give to each node children according to an independent copy
of ξ.
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Steps of the proof

FIRST STEP: Prove that E
[
c̃-occ(π,σn)

]
→ P231(π), for all π ∈ Av(231)

• We relate Tδ and the sequence (Tn)n∈N by

E
[
F(Tδ)

]
=

+∞∑
n=1

E
[
F(Tn)

]
· P(|Tδ| = n)

=
1+ δ

1− δ

+∞∑
n=1

E
[
F(Tn)

]
· Cn ·

(1− δ2

4

)n
;

• With a long recursion we prove that

E
[
c-occ(π, Tδ)

]
= δ−1 · P231(π) + O(1);

• Applying singularity analysis and reusing the bijection:

E
[
c̃-occ(π,σn)

]
→ P231(π), for all π ∈ Av(231).
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Steps of the proof

SECOND STEP: Prove that c̃-occ(π,σn)
Prob−→ P231(π), for all π ∈ Av(231)

• We study the second moment E
[
c̃-occ(π,σn)2

]
using similar

techniques and we obtain,

E
[
c̃-occ(π,σn)2

]
→ P231(π)2, for all π ∈ Av(231);

• Therefore

Var
(
c̃-occ(π,σn)

)
→ 0, for all π ∈ Av(231).

We finally apply the Second moment method.
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Thanks for your attention

Article and slides available at:
http://www.jacopoborga.com
(from midnight also on arXiv)

Questions?
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The construction of the random order σ∞
231.

• We consider the following Boltzmann distribution on Av(231) :

P(π) = 1
2

(
1
4

)|π|

, for all π ∈ Av(231), P(∅) = 1
2 .

• We sample a first non-empty permutation;
• We root it at its maximum;
• We sample a second (possibly empty) permutation;
• With probability 1/2 we do one of the two following construction:
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Local limit for uniform
321-avoiding permutations



321-avoiding permutations

Definition
For all n > 0, we define the following probability distribution on
Avn(321),

P321(π) :=


|π|+1
2|π| if π = 12...|π|,
1

2|π| if c-occ(21, π−1) = 1,
0 otherwise.

Example

π =

π−1 =
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321-avoiding permutations

Theorem [B.]
Let σn be a uniform random permutation in Avn(321) for all n ∈ N,

then
c̃-occ(π,σn)

Prob−→ P321(π), for all π ∈ Av(321).

Since the limiting objects
(
P321(π)

)
π∈Av(231) are deterministic:

Corollary
There exists a random infinite rooted permutation σ∞

321 such that
for all h ∈ N,

P
(
rh(σ∞

321) = (π,h+ 1)
)
= P321(π), for all π ∈ S2h+1,

and
σn qBS−→ L(σ∞

321) and σn aBS−→ σ∞
321.
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A bijection between 321-avoiding permutations & trees

It is well known that 321-avoiding permutations can be broken into
two increasing subsequences, the first above the diagonal and the
second below the diagonal:



A bijection between 321-avoiding permutations & trees

0

1

4 5

6 7

9

10

1 3 4

5 6

8

9

10

11

↔

2 3 82 7

Pre-order (from 0) Post-order (from 1)
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A bijection between 321-avoiding permutations & trees
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Steps of the proof

FIRST STEP: Prove that conditioning on σn, looking at a random
window of fixed size, when n→ ∞, we see the ”separating red line”
with probability one:

• [Hoffman, Rizzolo, Slivken]: The distance from each
subsequence to the diagonal is of order

√
n · e;
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Steps of the proof

SECOND STEP: Prove that conditioning on σn, looking at a random
window of fixed size, in the limit each point is above or below the
red line with probality 1/2 independently from the other points.

• We use the bijection between 321-avoiding permutations and
ordered rooted trees that maps the lower subsequence to the
leaves of the tree;

• We adapt a local limit result for Galton-Watson trees to know
the positions of the leaves.
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The construction of the random order σ∞
321.

• We consider the classical total order on Z;

• We paint, uniformly and independently, each integer number
either in orange or in blue;

• We move the orange numbers at the beginning of the new
random order;

• We move the blue numbers at the end of the new random order.
• The new random order has the same distribution as σ∞

321.

...− 9 − 8 − 7 − 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6 7 8 9...

...− 9 − 7 − 5 − 1 0 3 6 7 9... ...− 8 − 6 − 4 − 3 − 2 1 2 4 5 8 ...
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Our goal

Study limits of random permutations when the size tends to infinity

1. Scaling limits:
Limiting objects: Permutons
Corresponding statistic: õcc(π, σ), for all π ∈ S
Concrete examples: ρ-avoiding permutations for |π| = 3,
separable permutations, substitution-closed classes, Mallows
permutations, ...

2. Local limits:
Limiting objects: Rooted permutations + shift-invariant property
Corresponding statistic: c̃-occ(π, σ), for all π ∈ S
Concrete examples: ?

ρ-avoiding permutations for |π| = 3
Future projects: Substitution-closed permutation classes(?),
Mallows permutations(?), ...
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Rooted ordered tree

The trees that we consider are rooted and ordered.

Recall that a tree
is rooted if one node is distinguished as the root. Recall further that
a rooted tree is ordered if the children of each node are ordered in a
sequence.

∅

1 2

11 12 13
21 22

211 212
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Galton-Watson trees

A Galton-Watson tree is a random rooted tree defined as follow:

• We consider a probability distribution (ηk)
∞
k=0 on Z≥0, or,

equivalently, a random variable ξ with distribution (ηk)
∞
k=0;

• We build the random tree T recursively:
1. We start with the root;
2. We give to each node a number of children that is an independent
copy of ξ.

Recall that the Galton–Watson tree is called subcritical, critical or
supercritical when the expected number of children E[ξ] < 1, E[ξ] = 1
or E[ξ] > 1. It is a standard basic fact of branching process theory
that T is a.s. finite if E[ξ] ≤ 1, but T is infinite with positive probability
if E[ξ] > 1 (the supercritical case).
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if E[ξ] > 1 (the supercritical case).
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Pattern avoiding permutations

Definition
We say that a permutation σ avoids a pattern ρ ∈ S if

occ(ρ, σ) = 0.

We underline that the definition of ρ-avoiding permutation refers
to patterns and not to consecutive patterns.
Let Avn(ρ) be the set of ρ-avoiding permutations of size n and
Av(ρ) :=

∪
n∈N Av

n(ρ).

We want to study local limits for uniform random permutations in
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The shift invariant property

Definition
A random infinite rooted permutation (Z,444) has the shift invariant
property if for all patterns π ∈ S,

P(π1 444 π2 444 ... 444 πk) = P(π1 + s 444 π2 + s 444 ... 444 πk + s), ∀s ∈ Z.

Example
Let (Z,444) be a random shift-invariant rooted permutation. If
π = 132 then

· · · = P(0 444 2 444 1) =

P(1 444 3 444 2)

= P(2 444 4 444 3) = . . .

Proposition
Let (Z,444) be the annealed Benjamini-Schramm limit of a sequence
(σn)n∈N of random permutations, then (Z,444) has the shift
invariant property.
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The shift invariant property

QUESTION: Is every shift invariant random infinite rooted
permutation (Z,444) the annealed Benjamini-Schramm limit of some
sequence of random permutations?

Theorem [B.]
Let (Z,444) be a random shift-invariant rooted permutation. Then
the sequence of random permutations (σn)n∈N defined, for all
n ∈ N, by

P(σn = π) = P
(
π1 444 π2 444 ... 444 πn

)
, for all π ∈ Sn,

converges in the annealed Benjamini-Schramm sense to (Z,444).

Curiosity
The corresponding property for graphs is called unimodularity and
the following problem still open:
Is every unimodular random graph the local limit in distribution of
uniformly pointed random graphs? (solved for trees).
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Permutations

Permutation of size n ≡ Bijection from [n] = {1, . . . ,n} to itself.
Set Sn and S = ∪n∈NSn.
Notation:
• Two lines:

σ =

(
1 2 3 4 5 6 7 8
5 2 4 8 1 6 3 7

)

• One line:
σ = 5 2 4 8 1 6 3 7

Graphical representation:
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Permutation patterns

σ = 4 2 5 8 1 6 3 7

I = {2, 4, 5, 7}

Definition
π is a pattern of σ if there exists I such that patI(σ) = π.

Moreover,
if I is an interval then π is a consecutive pattern in σ.
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Pattern densities

Definition
We denote by occ(π, σ) the number of occurrences of a pattern π in
σ. More formally, if π ∈ Sk and σ ∈ Sn,

occ(π, σ) = Card
{
I ⊂ [n] of cardinality k such that patI(σ) = π

}
.

Moreover we denote by õcc(π, σ) the proportion of occurrences of a
pattern π in σ namely

õcc(π, σ) = occ(π, σ)(n
k
) .
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The natural choice
should be n−k+ 1



Weak-local convergence: the random case

σn
BS−→ σ∞ def⇐⇒ (σn, in) law−→ σ∞.

Definition
We say that a sequence (σn)n∈N of random permutations
converges in the annealed Benjamini-Schramm sense to a random
rooted permutation σ∞ if

(σn, in)n∈N
law−→ σ∞, w.r.t. the local distance d.

We say that a sequence (σn)n∈N of random permutation converges
in the quenched Benjamini-Schramm sense to a random measure
µ∞ on S̃• if

L
(
(σn, in)

∣∣σn) law−→ µ∞, w.r.t. the weak topology induced by d.

We write σn aBS−→ σ∞ and σn qBS−→ µ∞.
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