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Distribution Question: From Combinatorics to Probability
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Unimodality Question: ???



Partitions

Def. A partition of a number n is a weakly decreasing sequence of
positive integers

λ = (λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λk > 0)

such that n = λ1 + λ2 +⋯ + λk = ∣λ∣. Write λ ⊢ n.

Partitions can be visualized by their Ferrers diagram

(5,3,1)Ð→

The cells are indexed by matrix coordinates (i , j) so (1,5) is the
rightmost cell in the top row.



Conjugate Partition

Def. The conjugate of a partition λ ⊢ n is the partition λ′ ⊢ n
whose parts count the number of cells in each column of λ.

λ = (5,3,1) = and λ′ = (3,2,2,1,1) =

The cells are indexed by matrix coordinates (i , j) so (1,5) is the
rightmost cell in the top row.



Filling Partitions

Defn. A map from the cells of λ to the positive integers is a
filling of λ.

1 3 7 2 8
6 1 2
5

Defn. A filling of λ ⊢ n is bijective if every number in
[n] = {1,2, . . . ,n} appears exactly once.

1 3 7 4 9
6 2 8
5

Question. How many bijective fillings are there of shape (5,3,1)?

Answer. 9! = 362,880. Bijection with permutations of 9.
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Standard Young Tableaux

Defn. A standard Young tableaux of shape λ is a bijective filling
of λ such that every row is increasing from left to right and every
column is increasing from top to bottom.

1 3 6 7 9
2 5 8
4

Important Fact. The standard Young tableaux of shape λ,
denoted SYT(λ), index a basis of the irreducible Sn representation
indexed by λ.

Question. How many standard Young tableaux are there of shape
(5,3,1)? Answer. # SYT(5,3,1) = 162
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Standard Young Tableaux

Pause: Find all standard Young tableaux on (2,2).



Counting Standard Young Tableaux

Hook Length Formula.(Frame-Robinson-Thrall, 1954)
If λ is a partition of n, then

#SYT (λ) = n!
∏c∈λ hc

where hc is the hook length of the cell c, i.e. the number of cells
directly to the right of c or below c, including c.

Example. Filling cells of λ = (5,3,1) ⊢ 9 by hook lengths:

7 5 4 2 1
4 2 1
1

So, #SYT (5,3,1) = 9!
7⋅5⋅4⋅2⋅4⋅2 = 162.

Remark. Notable other proofs by Greene-Nijenhuis-Wilf ’79
(probabilistic), Eriksson ’93 (bijective), Krattenthaler ’95
(bijective), Novelli -Pak -Stoyanovskii’97 (bijective), Bandlow’08,
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q-Counting Standard Young Tableaux
Def. The descent set of a standard Young tableaux T , denoted
D(T ), is the set of positive integers i such that i + 1 lies in a row
strictly below the cell containing i in T .

The major index of T is the sum of its descents:

maj(T ) = ∑
i∈D(T)

i .

Example. The descent set of T is D(T ) = {1,3,4,7} so
maj(T ) = 15 for T = 1 3 6 7 9

2 4 8
5

.

Def. The major index generating function for λ is

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T)



q-Counting Standard Young Tableaux

Example. λ = (5,3,1)

SYT(λ)maj(q) ∶= ∑T∈SYT(λ) qmaj(T) =

q23 + 2q22 + 4q21 + 5q20 + 8q19 + 10q18 + 13q17 + 14q16 + 16q15

+16q14 + 16q13 + 14q12 + 13q11 + 10q10 + 8q9 + 5q8 + 4q7 + 2q6 + q5

Note, at q = 1, we get back 162.



q-Counting Standard Young Tableaux

Thm.(Lusztig-Stanley 1979) Given a partition λ ⊢ n, say

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T) = ∑
k≥0

bλ,kqk .

Then bλ,k ∶= #{T ∈ SYT(λ) ∶ maj(T ) = k} is the number of times
the irreducible Sn module indexed by λ appears in the
decomposition of the coinvariant algebra Z[x1, x2, . . . , xn]/I+ in the
homogeneous component of degree k.

Comments.
▸ The “fake degree sequence” is (bλ,0,bλ,1,bλ,2, . . .).

▸ The fake degrees also appear in branching rules between
symmetric groups and cyclic subgroups (Stembridge, 1989),
and the degree polynomials of certain irreducible
GLn(Fq)-representations (Steinberg 1951, Green 1955).
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q-Counting Standard Young Tableaux

Def. The descent set of a standard Young tableaux T , denoted
D(T ), is the set of positive integers i such that i + 1 lies in a row
strictly below the cell containing i in T .

The major index of T is the sum of its descents:

maj(T ) = ∑
i∈D(T)

i .

Example. There are 2 standard Young tableaux of shape (2,2):

S = 1 2
3 4

T = 1 3
2 4

D(S) = {2} and D(T ) = {1,3} so SYT(λ)maj(q) = q2 + q4.
Represent q2 + q4 by the vector of coefficients (00101).



q-Counting Standard Young Tableaux
Examples. (2,2) ⊢ 4: (0 0 1 0 1)

(5,3,1): (00000 1 2 4 5 8 10 13 14 16 16 16 14 13 10 8 5 4 2 1)

(6,4) ⊢ 10: (0 0 0 0 1 1 2 2 4 4 6 6 8 7 8 7 8 6 6 4 4 2 2 1 1)

(6,6) ⊢ 12: (0 0 0 0 0 0 1 0 1 1 2 2 4 3 5 5 7 6 9 7 9 8 9 7 9 6 7 5
5 3 4 2 2 1 1 0 1)

(11,5,3,1) ⊢ 20: (1 3 8 16 32 57 99 160 254 386 576 832 1184
1645 2255 3031 4027 5265 6811 8689 10979 13706 16959 20758
25200 30296 36143 42734 50163 58399 67523 77470 88305 99925
112370 125492 139307 153624 168431 183493 198778 214017
229161 243913 258222 271780 284542 296200 306733 315853
323571 329629 334085 336727 337662 336727 334085 329629
323571 315853 306733 296200 284542 271780 258222 243913
229161 214017 198778 183493 168431 153624 139307 125492
112370 99925 88305 77470 67523 58399 50163 42734 36143
30296 25200 20758 16959 13706 10979 8689 6811 5265 4027
3031 2255 1645 1184 832 576 386 254 160 99 57 32 16 8 3 1)
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Key Questions for SYT(λ)maj(q)

Recall SYT(λ)maj(q) = ∑bλ,kqk .

Distribution Question. What patterns do the coefficients in
the list (bλ,0,bλ,1, . . .) exhibit?

Existence Question. For which λ, k does bλ,k = 0 ?

Unimodality Question. For which λ, are the coefficients of
SYT(λ)maj(q) unimodal , meaning

bλ,0 ≤ bλ,1 ≤ . . . ≤ bλ,m ≥ bλ,m+1 ≥ . . .?



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(5,3,1)maj(q):

(1,2,4,5,8,10,13,14,16,16,16,14,13,10,8,5,4,2,1)



Visualizing Major Index Generating Functions

20 40 60 80 100

5e4
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3e5

Visualizing the coefficients of SYT(11,5,3,1)maj(q).

Question. What type of curve is that?
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Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(10,6,1)maj(q) along with the
Normal distribution with µ = 34 and σ2 = 98.



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(8,8,7,6,5,5,5,2,2)maj(q)



“Fast” Computation of SYT(λ)maj(q)
Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

where
▸ b(λ) ∶= ∑(i − 1)λi
▸ hc is the hook length of the cell c
▸ [n]q ∶= 1 + q +⋯ + qn−1 = qn−1

q−1
▸ [n]q! ∶= [n]q[n − 1]q⋯[1]q

The Trick. Each q-integer [n]q factors into a product of
cyclotomic polynomials Φd(q),

[n]q = 1 + q +⋯ + qn−1 =∏
d ∣n

Φd(q).

Cancel all of the factors from the denominator of SYT(λ)maj(q)
from the numerator, and then expand the remaining product.
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Corollaries of Stanley’s formula

Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

Corollaries.
1. SYT(λ)maj(q) = SYT(λ′)maj(q).
2. The coefficients of SYT(λ)maj(q) are symmetric.
3. There is a unique min-maj and max-maj tableau of shape λ.



Min-Maj and Max-Maj Tableaux

Example. The min-maj and max-maj tableaux for (6,4,3,3,1).

1 3 4 11 16 17

2 6 7 15

5 9 10

8 13 14

12

1 2 3 5 9 13

4 6 10 14

7 11 15

8 12 16

17

b(λ) =∑(i − 1)λi = 23 (17
2
) − b(λ′) = 109



Converting q-Enumeration to Discrete Probability

Vic Reiner’s Quote:
“If we can count it, we should also try to q-count it.”

I say:
“If we can q-count it, we should try to probabalize it.”

If f (q) = a0 + a1q + a2q2 +⋯ + anqn where ai are nonnegative
integers, then construct the random variable Xf with discrete
probability distribution

P(Xf = k) = ak

∑j aj
= ak

f (1)
.

Now, if f is part of a family of q-analogs, we can study the limiting
distributions.
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Converting q-Enumeration to Discrete Probability

Example. For SYT(λ)maj(q) = ∑bλ,kqk , define the integer
random variable Xλ[maj] with discrete probability distribution

P(Xλ[maj] = k) =
bλ,k

∣SYT(λ)∣
.

We claim the distribution of Xλ[maj] “usually” is approximately
normal for most shapes λ. Let’s make that precise!



Standardization

Thm.(Adin-Roichman, 2001)
For any partition λ, the mean and variance of Xλ[maj] are

µλ =
(∣λ∣2 ) − b(λ′) + b(λ)

2
= b(λ) + 1

2

⎡⎢⎢⎢⎢⎣

∣λ∣

∑
j=1

j −∑
c∈λ

hc

⎤⎥⎥⎥⎥⎦
,

and

σ2
λ =

1
12

⎡⎢⎢⎢⎢⎣

∣λ∣

∑
j=1

j2 −∑
c∈λ

h2
c

⎤⎥⎥⎥⎥⎦
.

Def. The standardization of Xλ[maj] is

X∗
λ [maj] = Xλ[maj] − µλ

σλ
.

So X∗
λ [maj] has mean 0 and variance 1 for any λ.



Asymptotic Normality

Def. Let X1,X2, . . . be a sequence of real-valued random variables
with standardized cumulative distribution functions
F1(t),F2(t), . . .. The sequence is asymptotically normal if

∀t ∈ R, lim
n→∞

Fn(t) = 1√
2π ∫

t

−∞
e−x2/2 = P(N < t)

where N is a Normal random variable with mean 0 and variance 1.

Question. In what way can a sequence of partitions approach
infinity?
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The Aft Statistic

Def. Given a partition λ = (λ1, . . . , λk) ⊢ n, let

aft(λ) ∶= n −max{λ1, k}.

Example. λ = (5,3,1) then aft(λ) = 4.

● ● ●
●

Look it up: Aft is now on FindStat as St001214



Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2018+)

Suppose λ(1), λ(2), . . . is a sequence of partitions, and let
XN ∶= Xλ(N)[maj] be the corresponding random variables for the
maj statistic. Then, the sequence X1,X2, . . . is asymptotically
normal if and only if aft(λ(N))→∞ as N →∞.

Question. What happens if aft(λ(N)) does not go to infinity as
N →∞?
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Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2018+)
Let λ(1), λ(2), . . . be a sequence of partitions. Then (Xλ(N)[maj]∗)
converges in distribution if and only if

(i) aft(λ(N))→∞; or
(ii) ∣λ(N)∣→∞ and aft(λ(N)) is eventually constant; or

(iii) the distribution of X∗

λ(N)[maj] is eventually constant.
The limit law is N (0,1) in case (i), Σ∗

M in case (ii), and discrete in
case (iii).

Here ΣM denotes the sum of M independent identically distributed
uniform [0,1] random variables, known as the Irwin–Hall
distribution or the uniform sum distribution.



Proof ideas: Characterize the Moments and Cumulants

Definitions.
▸ For d ∈ Z≥0, the dth moment

µd ∶= E[X d]

▸ The moment-generating function of X is

MX(t) ∶= E[etX ] =
∞

∑
d=0

µd
td

d!
,

▸ The cumulants κ1, κ2, . . . of X are defined to be the
coefficients of the exponential generating function

KX(t) ∶=
∞

∑
d=1

κd
td

d!
∶= log MX(t) = logE[etX ].



Nice Properties of Cumulants

1. (Familiar Values) The first two cumulants are κ1 = µ, and
κ2 = σ2.

2. (Shift Invariance) The second and higher cumulants of X
agree with those for X − c for any c ∈ R.

3. (Homogeneity) The dth cumulant of cX is cdκd for c ∈ R.

4. (Additivity) The cumulants of the sum of independent
random variables are the sums of the cumulants.

5. (Polynomial Equivalence) The cumulants and moments are
determined by polynomials in the other sequence.



Examples of Cumulants and Moments

Example. Let X = N (µ,σ2) be the normal random variable with
mean µ and variance σ2. Then the cumulants are

κd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ d = 1,
σ2 d = 2,
0 d ≥ 3.

and for d > 1,

µd =
⎧⎪⎪⎨⎪⎪⎩

0 if d is odd,
σd(d − 1)!! if d is even.

.

Example. For a Poisson random variable X with mean µ, the
cumulants are all κd = µ, while the moments are µd = ∑d

i=1 µ
i Si ,d .



Cumulants for Major Index Generating Functions

Thm.(Billey-Konvalinka-Swanson, 2018+)
Let λ ⊢ n and d ∈ Z>1. We have

κλd = Bd
d

⎡⎢⎢⎢⎢⎣

n
∑
j=1

jd −∑
c∈λ

hd
c

⎤⎥⎥⎥⎥⎦
(1)

where B0,B1,B2, . . . = 1, 1
2 ,

1
6 ,0,−

1
30 ,0,

1
42 ,0, . . . are the Bernoulli

numbers (OEIS A164555 / OEIS A027642).

Remark. We use this theorem to prove that as aft approaches
infinity the standardized cumulants for d ≥ 3 all go to 0 proving the
Asymptotic Normality Theorem.

Remark. Note, κλ2 is exactly the Adin-Roichman variance formula.
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q-Enumeration to Probability
Thm.(Chen–Wang–Wang-2008 and Hwang–Zacharovas-2015)
Suppose {a1, . . . , am} and {b1, . . . ,bm} are multisets of positive
integers such that

f (q) =
∏m

j=1[aj]q

∏m
j=1[bj]q

=∑ ckqk ∈ Z≥0[q]
.
Let X be a discrete random variable with P(X = k) = ck/f (1).
Then the dth cumulant of X is

κd = Bd
d

m
∑
j=1

(ad
j − bd

j )

where Bd is the dth Bernoulli number (with B1 = 1
2).

Example. This theorem applies to

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T) =
qb(λ)[n]q!
∏c∈λ[hc]q



Corollaries of the Distribution Theorem

1. Asymptotic normality also holds for block diagonal skew
shapes with aft going to infinity.

2. New proof of asymptotic normality of
[n]q! = ∑w∈Sn qmaj(w) = ∑w∈Sn qinv(w) due to Feller (1944).

3. New proof of asymptotic normality of q-multinomial
coefficients due to Diaconis (1988),
Canfield-Jansen-Zeilberger (2011).

4. New proof of asymptotic normality of q-Catalan numbers due
to Chen-Wang-Wang(2008).

Question. Using Pak-Panova-Morales’s q-hook length formula,
can we prove an asymptotic normality for all skew shapes?
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2. New proof of asymptotic normality of
[n]q! = ∑w∈Sn qmaj(w) = ∑w∈Sn qinv(w) due to Feller (1944).

3. New proof of asymptotic normality of q-multinomial
coefficients due to Diaconis (1988),
Canfield-Jansen-Zeilberger (2011).

4. New proof of asymptotic normality of q-Catalan numbers due
to Chen-Wang-Wang(2008).

Question. Using Pak-Panova-Morales’s q-hook length formula,
can we prove an asymptotic normality for all skew shapes?



Existence Question

Recall SYT(λ)maj(q) = ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Cor of Stanley’s formula. For every λ ⊢ n ≥ 1 there is a unique
tableau with minimal major index b(λ) and a unique tableau with
maximal major index (n

2) − b(λ′). These two agree for shapes
consisting of one row or one column, and otherwise they are
distinct.
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Cor of Stanley’s formula. For every λ ⊢ n ≥ 1 there is a unique
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distinct.



Patterns on Tableaux

Example. The min-maj and max-maj tableaux for (6,4,3,3,1).

1 3 4 11 16 17

2 6 7 15

5 9 10

8 13 14

12

1 2 3 5 9 13

4 6 10 14

7 11 15

8 12 16

17

b(λ) =∑(i − 1)λi = 23 (17
2
) − b(λ′) = 109



Existence Question

Recall SYT(λ)maj(q) = ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Cor of Stanley’s formula. The coefficient of qb(λ)+1 in
SYT(λ)maj(q) = 0 if and only if λ is a rectangle.
If λ is a rectangle with more than one row and column, then
coefficient of qb(λ)+2 is 1.

Question. Are there other internal zeros?



Classifying All Nonzero Fake Degrees
Thm.(Billey-Konvalinka-Swanson, 2018+)
For any partition λ which is not a rectangle,

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T)

as no internal zeros. If λ is a rectangle with at least two rows and
columns, SYT(λ)maj(q) has exactly one internal zeros at b(λ) + 1
up to symmetry.

Cor. The irreducible Sn-module indexed by λ appears in the
decomposition of the degree k component of the coinvariant
algebra if and only if bλ,k > 0 as characterized above.

Acknowledgment. Our motivation for this project came from a
conjecture of Sheila Sundaram’s which was solved by Josh
Swanson on the zeros of the maj-mod-n generating function on
standard Young tableaux.



Exceptional Tableaux

Def. Let E(λ) denote the set of exceptional tableaux of shape λ
consisting of the following elements:

(i) For all λ, the max-maj tableau for λ.
(ii) If λ is a rectangle, the min-maj tableau for λ.

(iii) If λ is a rectangle with at least two rows and columns, the
unique tableau in SYT(λ) with maj equal to (n

2) − b(λ′) − 2.

Example. E(555) has the following three elements:

1 2 3
4 5 6
7 8 9

1 2 7
3 5 8
4 6 9

1 4 7
2 5 8
3 6 9



Major Index Increment Map

Proof Outline. We give an explicit map

φ ∶ SYT(λ) − E(λ)Ð→ SYT(λ)

such that

1. maj(φ(T )) = maj(T ) + 1,

2. the descent set of D(T ) and D(φ(T )) are “close”.

Internal Zeros Classification Theorem now follows by starting at
the minimal maj tableau in SYT(λ) − E(λ) and applying φ
recursively until it hits a tableaux in E(λ).



Major Index Increment Map

Pattern Inspired Approach. For each T ∈ SYT(λ) − E(λ),
identify a permutation σ such that σ ⋅T = T ′ is in SYT (λ) and
maj(T ′) = maj(T ) + 1.

Example.

1 4
2 5
3 9
6
7
8

Ð→
(543)

1 3
2 4
5 9
6
7
8

D(T ) = {1,2,4,5,6,7} Ð→ D(T ′) = {1,3,4,5,6,7}



Major Index Increment Map

Pattern Inspired Approach. For each
T ∈ SYT(λ) ∖maxmaj(λ), identify a permutation σ such that
σ ⋅T = T ′ is in SYT (λ) and maj(T ′) = maj(T ) + 1.

More Examples.

1 4
2 5
3 9
6
7
8

Ð→
(543)

1 3
2 4
5 9
6
7
8

Ð→
(87654)

1 3
2 8
4 9
5
6
7

Ð→
(32)

1 2
3 8
4 9
5
6
7

Ð→
(987)

1 2
3 7
4 8
5
6
9

Ð→
(876)

1 2
3 6
4 7
5
8
9

D(T):2 Ð→ 3, 7 Ð→ 8, 1 Ð→ 2, 6 Ð→ 7, 5 Ð→ 6



Patterns on Tableaux

Rotation Rule. If there exists i < j < k, such that the
consecutive values [i , k] follow the descent/exclusion pattern

j + 1
j + 2
⋮
k

���XXXi − 1 i ���XXXk + 1
i + 1
i + 2
⋮
j

Ð→

j
j + 1
⋮

k − 1
���XXXi − 1 k ���XXXk + 1

i
i + 1
⋮

j − 1

then the descent set on the left contains j − 1 and the one on the
right contains j , otherwise all other descents are the same.



Patterns on Tableaux

Rotation Rule. If there exists i = j < k, such that the values
[i , k] follow the descent/exclusion pattern

i − 1 i + 1
i + 2
⋮
k

i ���XXXk + 1

Ð→

i − 1 i
i + 1
⋮

k − 1
k ���XXXk + 1

then the descent set on the left contains j − 1 and the one on the
right contains j , otherwise all other descents are the same.



Patterns on Tableaux

Rotation Rule. If there exists i < j = k, such that the values
[i , k] follow the descent/exclusion pattern

���XXXi − 1 i
i + 1
⋮

k − 1
k k + 1

Ð→

���XXXi − 1 k
i

i + 1
⋮

k − 1 k + 1

then the descent set on the left contains j − 1 and the one on the
right contains j , otherwise all other descents are the same.



Patterns on Tableaux

Dual Rotation Rule. If there exists i < j < k, such that the
values [i , k] follow the descent/exclusion pattern

���XXXi − 1 i ⋯ j − 1
k

j ⋯ k − 1 ���XXXk + 1
Ð→

���XXXi − 1 i + 1 ⋯ j
i

j + 1 ⋯ k ���XXXk + 1
,

then the descent set on the left contains j − 1 and the one on the
right contains j , otherwise all other descents are the same.



Patterns on Tableaux

Fact. Almost all standard Young tableaux admit some rotation.

Example. Among the 81,081 tableaux in SYT(5,4,4,2), there
are only 24 (i.e., 0.03%) on which we cannot apply any rotation
rule.

Question. What about the tableaux which don’t admit any
rotation rules?



Patterns on Tableaux

Fact. Almost all standard Young tableaux admit some rotation.

Example. Among the 81,081 tableaux in SYT(5,4,4,2), there
are only 24 (i.e., 0.03%) on which we cannot apply any rotation
rule.

Question. What about the tableaux which don’t admit any
rotation rules?



Block Rules

Five More Block Rules. Adding a descent at 1, plus possibly
other mutations.

B1:
1 2 3 4 5 16
6 7 8 9 10 17

11 12 13 14 15

⤿
⤿

1 3 4 5 6 15
2 7 8 9 10 17

11 12 13 14 16

B2:
1 2 3 4 5
6 7 8 9 10

11 12 13 ��ZZ14
⤿

1 3 4 5 10
2 7 8 9 13
6 11 12 ��ZZ14



Block Rules

B3:

1 2 3 4
5 9
6 10
7
8

⤿

1 3 4 9
2 5
6 10
7
8

B4:

1 2 7 10
3 5 8 11
4 6 9 12

13 ��ZZ14

⤿
⤿

1 4 7 11
2 5 8 12
3 6 9 13

10 ��ZZ14



Block Rules

B5:

1 2
3 6
4 7
5 8
9 ��ZZ10

⤿

1 6
2 7
3 8
4 9
5 ��ZZ10

Proof Completion by Cases. Every tableaux which is not
exceptional and avoids

1 2 ⋯ i
i + 1 z + 1
i + 2
⋮
z

admits a rotation rule. All other non-exceptional tableaux admit a
block rule or a rotation rule.



Strong Poset on SYT(λ)

Def. The Strong SYT Poset P(λ) on either

SYT(λ) ∖ {minmaj(λ),maxmaj(λ)}

if λ is a rectangle with at least two rows and columns, or SYT(λ)
otherwise, is the transitive closure of the covering relations given
by all applicable rotation rules, block rules, and inverse-transpose
block rules, each increasing maj by 1.

Corollary. As a poset, P(λ) is ranked according to maj(T ) and
has a unique minimal and maximal element.



Weak Poset on SYT(λ)

Def. The Weak SYT Poset Q(λ) on either

SYT(λ) ∖ {minmaj(λ),maxmaj(λ)}

if λ is a rectangle with at least two rows and columns, or SYT(λ)
otherwise, is the transitive closure of the relations given by
T < φ(T ) and the inverse-transpose of these rules.

Corollary. As a poset, Q(λ) is ranked according to maj(T ) and
has a unique minimal and maximal element.



Strong and Weak Poset on SYT(3,2,1)

          Strong       

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5)(5 4 6 1 2 3)

(3 2 6 1 4 5)(5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(6 2 5 1 3 4) (4 3 6 1 2 5)

(6 3 5 1 2 4)

     Weak            

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5) (5 4 6 1 2 3)

(3 2 6 1 4 5) (5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(4 3 6 1 2 5)(6 2 5 1 3 4)

(6 3 5 1 2 4)



Unimodality Question

Conjecture. The polynomial SYTmaj(q) is unimodal if λ has at
least 4 corners. If λ has 3 corners or fewer, then SYTmaj(q) is
unimodal except when λ or λ′ is among the following partitions:

1. Any partition of rectangle shape that has more than one row
and column.

2. Any partition of the form (k,2) with k ≥ 4 and k even.
3. Any partition of the form (k,4) with k ≥ 6 and k even.
4. Any partition of the form (k,2,1,1) with k ≥ 2 and k even.
5. Any partition of the form (k,2,2) with k ≥ 6.
6. Any partition on the list of 40 special exceptions of size at

most 28.



Unimodality Question

Special Exceptions.

(3,3,2), (4,2,2), (4,4,2), (4,4,1,1),
(5,3,3), (7,5), (6,2,1,1,1,1),

(5,5,2), (5,5,1,1), (5,3,2,2), (4,4,3,1),
(4,4,2,2), (7,3,3), (8,6), (6,6,2),

(6,6,1,1), (5,5,2,2), (5,3,3,3), (4,4,4,2),
(11,5), (10,6), (9,7), (7,7,2),

(7,7,1,1), (6,6,4), (6,6,1,1,1,1), (6,5,5),
(5,5,3,3), (12,6), (11,7), (10,8),

(15,5), (14,6), (11,9), (16,6), (12,10), (18,6),
(14,10), (20,6), (22,6).



Local Limit Conjecture

Conjecture. Let λ ⊢ n > 25. Uniformly for all n and for all
integers k, we have

∣P(Xλ[maj] = k) −N(k;µλ, σλ)∣ = O ( 1
σλ aft(λ)

)

where N(k;µλ, σλ) is the density function for the normal
distribution with mean µλ and variance σλ.

The conjecture has been verified for n ≤ 50 and aft(λ) > 1.

Up to n = 50, the constant 1/9 works.

At n = 50, 1/10 does not.



Conclusion

P E R M U T A T I O N
A 2
T 0
T 1
E 8
R
N
S

Many Thanks!
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