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Inversion Sequences

An inversion sequence of length n is an integer sequence e = e1e2 · · · en
such that 0 ≤ ei < i. The set of all inversion sequences e of length n is
denoted by In.

Example. e = 00213 ∈ I5.

We can encode permutations as inversion sequences by defining a
bijection Θ : Sn → In, where Θ(π) = e = e1e2 · · · en is and

ei = |{j : j < i and πj > πi}|.

For instance, Θ(35142) = 00213.
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Classical Patterns

• The reduction of e ∈ In is the
word obtained by replacing the
ith smallest entry of e with i− 1.

• We say e contains the (classical)
pattern p = p1p2 · · · pl if there
exist i1 < i2 < · · · < il such that
the reduction of ei1ei2 · · · eil is p.
Otherwise, e avoids p.

Example. e = 00213 contains 012
and 001. But it avoids 201 and 110.

We denote In(p) = {e ∈ In : e avoids p}. For instance,
I3(001) = {000, 010, 011, 012}.
The avoidance sequences |In(p)| have been studied by Corteel, Martinez,
Savage and Weselcouch. Independently by Mansour and Shattuck.

|In(012)|: Boolean permut.
|In(021)|: Large Schröder numb.

|In(000)|: Euler up/down numb.
|In(011)|: Bell numb.
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Consecutive Patterns

We say e ∈ In contains the (consecutive) pattern p = p1p2 · · · pl if there
exists i such that eiei+1 · · · ei+l−1 has reduction p. Otherwise, we say e
avoids p.
Example. e = 0023013 avoids 000 and 010, but it contains 012 and 120.

We consider the problem of determining the sequence |In(p)| for
consecutive patterns p = p1p2 · · · pl.
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Our Results for Consecutive Patterns of Length 3

We denote In,k(p) = {e ∈ In(p) : en = k}.
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Recurrences

A recurrence for the pattern p = 110:

|In,k (p)| = |In−1 (p)| −
∑
j>k

|In−2,j (p)|,

with |I0(p)| = 1 and In(p) =
n−1∑
j=0

|In,j(p)|.

For the pattern p = 000:

• Recurrence. |In(p)| = (n− 1) |In−1(p)|+ (n− 2) |In−2(p)|.

• EGF. 2− 1
eEi(1) + x ex−1

ex(1−x) + log 1
1−x + 1

eEi(1− x), with

Ei(x) = −
∫∞
−x

e−t

t dt.

• Closed form. |In(p)| = (n+1)!
n

(
1−

∑n+1
j=0

(−1)j
j!

)
.
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Equivalence Between Patterns

We say two consecutive patterns p and p′ are:

• Wilf equivalent, denoted p ∼ p′, if for all n,

|In (p)| = |In (p′)|.

• Strongly Wilf equivalent, denoted p
s∼ p′, if for all n and m,

|{e ∈ In : e has m occur. of p}| = |{e ∈ In : e has m occur. of p′}| .

• If the above condition holds for any set of positions for the m
occurrences, then p and p′ are super strongly Wilf equivalent,
denoted p

ss∼ p′.

Example. e = 0023013 has two occurrences of the pattern 012; in
positions 2 and 5.
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The Patterns 100 and 110 are Equivalent

Proof 1. |In(100)| and |In(110)| satisfy the same recurrence, so
100 ∼ 110.

Proof 1+ε. With an inductive argument; 100
s∼ 110.

Proof 2. (Sketch of 100
ss∼ 110)

1 For p = 100, 110, define

Em(p, e) = {i : eiei+1ei+2 is an occur. of p}.

2 Construct a bijection

{e ∈ In : Em(100, e) ⊃ S} ←→ {e ∈ In : Em(110, e) ⊃ S}.

3 Use inclusion–exclusion to see

|{e ∈ In : Em(100, e) = S}| = |{e ∈ In : Em(110, e) = S}| .

This is the only equivalence between consecutive patterns of length 3.
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Longer Consecutive Patterns

Theorem. A complete list of equivalences between consecutive patterns
of length 4 is as follows:

• 2013
ss∼ 2103

• 3012
ss∼ 3102

• 0100
ss∼ 0110

• 1000
ss∼ 1110

• 1101
ss∼ 1001

ss∼ 1011

• 0021
ss∼ 0121

• 1002
ss∼ 1102

ss∼ 1012

• 2001
ss∼ 2101

ss∼ 2011
ss∼ 2201

• 1200
ss∼ 1210

ss∼ 1220

• 2100
ss∼ 2210

• 0211
ss∼ 0221

• 2012
ss∼ 2102

Conjecture. Two consecutive (inversion sequence) patterns of length m
are strongly Wilf equivalent if and only if they are Wilf equivalent.
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Patterns of Relations

Define the set In (R1, R2)c, with Ri ∈ {≤,≥, <,>,=, 6=}, consisting of
inversion sequences e ∈ In for which there is no i such that eiR1ei+1 and
ei+1R2ei+2.

Example. Note that

• , but

• 0023224337 ∈ I10(≥, >)c

Theorem. A complete list of equivalences between consecutive patterns
of relations of length 3 is as follows:

• (≥,≥)c
ss∼ (<,<)c

• (≥, <)c
ss∼ (<,≥)c

s∼ (6=,≥)c

• (≥, >)c
ss∼ (>,≥)c

• (≥,=)c
ss∼ (=,≥)c

• (>,=)c
ss∼ (=, >)c

Reproving a result of Baxter–Pudwell:

Corollary. The generalized permutation patterns 1243 and 4213 are Wilf
equivalent.
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Our Results for Patterns of Relations

Connections to other combinatorial objects:
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The Pattern In(>,≤)c
Observation. (Martinez–Savage)
e ∈ In(>,≤)c iff there exists k
such that
e1 ≤ e2 ≤ · · · ≤ ek > ek+1 > en.

Theorem. The sequence |In (>,≤)c| has OGF,

A(x) =
1− 2x−

√
1− 4x− 4x2

4x2
.

Moreover:

• Let dist(e) be the number of distinct elements of e. Then∑
e∈In(>,≤) y

dist(e) is unimodal and palindromic (conjectured by

Martinez–Savage).

• We can count all variations of unimodal inversion sequences (also
according to dist(e)).
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