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Inversion Sequences

An inversion sequence of length n is an integer sequence e = ejes -« - €y,
such that 0 < e; < i. The set of all inversion sequences e of length n is
denoted by I,,.
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Inversion Sequences

An inversion sequence of length n is an integer sequence e = ejes -« - €y,
such that 0 < e; < i. The set of all inversion sequences e of length n is
denoted by I,,.

Example. e = 00213 € I5.
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An inversion sequence of length n is an integer sequence e = ejes -« - €y,
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Inversion Sequences

An inversion sequence of length n is an integer sequence e = ejes -« - €y,
such that 0 < e; < i. The set of all inversion sequences e of length n is
denoted by I,,.

Example. e = 00213 € I5.

] 1 2 3 4 5

We can encode permutations as inversion sequences by defining a
bijection © : S,, — I,,, where ©(7) = e =ejey--- €, is and

e; = |{]j<zand T >’/T1}|

For instance, ©(35142) = 00213.



Classical Patterns

e The reduction of e € I, is the Example. ¢ = 00213 contains 012
word obtained by replacing the and 001. But it avoids 201 and 110.
ith smallest entry of e with ¢ — 1.

e We say e contains the (classical)
pattern p = pyps - - - p; if there

exist i1 < iy < --- < 4; such that ’
the reduction of e;, e;, - - - €;, is p. 2
Otherwise, e avoids p. e
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Classical Patterns

e The reduction of e € I, is the Example. e = 00213 contains 012
word obtained by replacing the and 001. But it avoids 201 and 110.
ith smallest entry of e with ¢ — 1.

e We say e contains the (classical)
pattern p = pyps - - - p; if there
exist i1 < iy < --- < 4; such that ’
the reduction of e;, e;, - - - €;, is p. 2
Otherwise, e avoids p. 1o

We denote I,,(p) = {e € I,, : e avoids p}. For instance,
I5(001) = {000,010, 011,012}.

The avoidance sequences |I,,(p)| have been studied by Corteel, Martinez,
Savage and Weselcouch. Independently by Mansour and Shattuck.

|1,,(012)|: Boolean permut. |1,,(000)|: Euler up/down numb.
|I,,(021)]: Large Schroder numb. |1,,(011)]: Bell numb.
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Consecutive Patterns

We say e € I, contains the (consecutive) pattern p = pips - - - p; if there
exists ¢ such that e;e; 1 -+ e;1;—1 has reduction p. Otherwise, we say ¢
avoids p.

Example. ¢ = 0023013 avoids 000 and 010, but it contains 012 and 120.

We consider the problem of determining the sequence |I1,,(p)| for
consecutive patterns p = pips - - - .
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Our Results for Consecutive Patterns of Length 3

We denote I, 1 (p) = {e € L,(p) : e, = k}.

Juan S. Auli Consecutive Patterns in Inversion Sequences



Our Results for Consecutive Patterns of Length 3

We denote I, 1 (p) = {e € L,(p) : e, = k}.

Pattern p in the OEIS? Observations about |L,(p)|
012 A049774 Counts |S, (321)|
021 A071075 Counts |S,, (1324)]
102 New Tk P)|—|In 1P = L2117 T2, (P)]
120 A200404 Counts |s,1 1432)]
201 New ‘Ink | n-1(p) |_k2j>k‘ll1 2/ )l
210 New Lok (P)] = a1 (P)] = Lok Ejom Li<j T3 ()|
Pattern p in the OEIS? Observations about |L,(p)|
000 A052169 Equals M, where d, is the number of de-
rangements of [n]
001 New Lk (P)] = a1 (P)| = Ljk [Ta2. (p)|
010 New |In.k ([))‘ =L (p)| = (n—2-k) |In—2.k ([))|
o011 New Lk (P)] = M1 (P)| = Xk [Ta2j (P)] if k #n—1,
and [L, -1 (p)| = [Li-1(p)|
100,110 New |In.k ([’)‘ = L1 (p)| - Yjsk |In—2<j (P)l
101 New Lk (P)] = Tt (p)| =k T2 ()]
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Recurrences

A recurrence for the pattern p = 110:

n—1t

Lo D) = s @) = S Loy ), 7
i>k

n—1
with [Io(p)| =1 and L,(p) = ZO Lo (p)].
j:
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Recurrences

nt

A recurrence for the pattern p = 110:
n—1t

Lok )] = Tne1 ()] = D [Tn25 (0)], "

>k

n—1
with [Io(p)| =1 and L,(p) = ZO Lo (p)].
j:

For the pattern p = 000:

e Recurrence. |L,(p)| = (n — 1) [Io—1(p)| + (n — 2) |I,—2(p)|.
o EGF. 2 — LEi(1) + ﬁ +log 7~ + LEi(1 — z), with
Ei(z) = — [~ & dt.
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Recurrences

nt

A recurrence for the pattern p = 110:
n—1t

Lok O = Lot D = 3 [z )"

>k

n—1
with [Io(p)| =1 and L,(p) = ZO Lo (p)].
j:

For the pattern p = 000:
e Recurrence. |L,(p)| = (n — 1) [Io—1(p)| + (n — 2) |I,—2(p)|.

o EGF. 2 — LEi(1) xf )—i—logﬁ—&— 1Ei(1 — ), with

Ei(z) =— 7, Tdt.

o Closed form. [L,(p)| = X! (1 o S <—,1>J‘)_

g!

Juan S. Auli Consecutive Patterns in Inversion Sequences



Equivalence Between Patterns

We say two consecutive patterns p and p’ are:
e Wilf equivalent, denoted p ~ p/, if for all n,

1L, (p)] = [T ()]

e Strongly Wilf equivalent, denoted p ~ p/, if for all n and m,

|{e € I, : e has m occur. of p}| = [{e € I, : e has m occur. of p'}|.

e If the above condition holds for any set of positions for the m
occurrences, then p and p’ are super strongly Wilf equivalent,
denoted p X p'.
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Equivalence Between Patterns

We say two consecutive patterns p and p’ are:
o Wilf equivalent, denoted p ~ p’, if for all n,

1L, (p)] = [T ()]

e Strongly Wilf equivalent, denoted p ~ p/, if for all n and m,

|{e € I, : e has m occur. of p}| = [{e € I, : e has m occur. of p'}|.

e If the above condition holds for any set of positions for the m
occurrences, then p and p’ are super strongly Wilf equivalent,
denoted p X p'.

Example. ¢ = 0023013 has two occurrences of the pattern 012; in
positions 2 and 5.
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The Patterns 100 and 110 are Equivalent

Proof 1. |I,(100)| and |I,,(110)| satisfy the same recurrence, so
100 ~ 110.
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The Patterns 100 and 110 are Equivalent

Proof 1. |I,(100)| and |I,,(110)| satisfy the same recurrence, so
100 ~ 110.

Proof 1+¢. With an inductive argument; 100 ~ 110.
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The Patterns 100 and 110 are Equivalent

Proof 1. |I,(100)| and |I,,(110)| satisfy the same recurrence, so
100 ~ 110.

Proof 1+e. With an inductive argument; 100 ~ 110.

Proof 2. (Sketch of 100 X 110)
@ For p =100, 110, define

Em(p,e) = {i: e;e;r1€i42 is an occur. of p}.

® Construct a bijection

{e €L, : Em(100,¢e) D S} +— {e €I, : Em(110,e) D S}.

©® Use inclusion—exclusion to see
{e €I, : Em(100,e) = S}| = [{e € I,, : Em(110,e) = S}|.
This is the only equivalence between consecutive patterns of length 3.
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Longer Consecutive Patterns
e 2013 < 2103 e 1002 X 1102 X 1012
e 1000 X 1110 e 2100 ~ 2210

Theorem. A complete list of equivalences between consecutive patterns
X 2001 X 2101 X 2011 % 2201
e 0100 ~ 0110
X 0211 X 0221
e 0021 ~ 0121

of length 4 is as follows:
e 3012 % 3102
1200 < 1210 < 1220
e 1101 X 1001 < 1011
2012 X 2102
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Longer Consecutive Patterns
e 2013 < 2103 e 1002 X 1102 X 1012
e 1000 X 1110 e 2100 ~ 2210

Theorem. A complete list of equivalences between consecutive patterns
X 2001 X 2101 X 2011 % 2201
e 0100 ~ 0110
X 0211 X 0221
e 0021 ~ 0121

of length 4 is as follows:
e 3012 % 3102
1200 < 1210 < 1220
e 1101 X 1001 < 1011
2012 X 2102

Conjecture. Two consecutive (inversion sequence) patterns of length m
are strongly Wilf equivalent if and only if they are Wilf equivalent.
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Patterns of Relations

Define the set I, (R, R2),., with R; € {<,>,<,>,=,#}, consisting of
inversion sequences e € I,, for which there is no i such that e; R1e;41 and
61‘+1R2€i+2-
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Patterns of Relations

Define the set I, (R, R2),., with R; € {<,>,<,>,=,#}, consisting of
inversion sequences e € I,, for which there is no ¢ such that e; R1e;11 and

61‘+1R2€i+2-

Example. Note that
e 0103323431 & I19(>,>)., but
e 0023224337 € I19(>,>),
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Patterns of Relations

Define the set I, (R, R2),., with R; € {<,>,<,>,=,#}, consisting of
inversion sequences e € I,, for which there is no ¢ such that e; R1e;11 and
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Example. Note that
e 0103323431 & I19(>,>)., but
e 0023224337 € I19(>,>).
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Patterns of Relations

Define the set I, (R, R2),., with R; € {<,>,<,>,=,#}, consisting of
inversion sequences e € I,, for which there is no ¢ such that e; R1e;11 and

61‘+1R2€i+2-
Example. Note that
e 0103323431 & I19(>,>)., but
e 0023224337 € I19(>,>).
Theorem. A complete list of equivalences between consecutive patterns
of relations of length 3 is as follows:
® (27 Z)c ,Sj (<7 <)c ® (27:)c fj (:7 Z)c
® (27 <>c fg (<7 Z)c r‘i (#’ Z)c ° (>’:)C ,\: (:7 >)C

SSs

® (Zv >)c ~ (>7 Z)C
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Patterns of Relations

Define the set I, (R, R2),., with R; € {<,>,<,>,=,#}, consisting of
inversion sequences e € I,, for which there is no ¢ such that e; R1e;+1 and
61‘+1R2€i+2-
Example. Note that

e 0103323431 & I19(>,>)., but

e 0023224337 € I19(>,>).

Theorem. A complete list of equivalences between consecutive patterns
of relations of length 3 is as follows:

.« (2,2), % (<, <), * (29 (=)
o (2,9, % (<,2). ~ (#2)

SSs

® (Zv >)c ~ (>7 Z)C

c

Reproving a result of Baxter—Pudwell:

Corollary. The generalized permutation patterns 1243 and 4213 are Wilf
equivalent.
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Our Results for Patterns of Relations

Connections to other combinatorial objects:

Pattern p |L,(p)| in the OEIS as OEIS description
(<,>), A000027 n
(<,>). A000108 C,,: Catalan numbers
(<,#), A040000 1,2,2,... (constant 2 for n > 1)
(=,9). A000045 F,12: (n+2)th Fibonacci number
(=,2). R (<,<), A049774 S, (321)]
(2,90 2 (<,2) X (A 2), A000079 2!
(2.>), 2 (>,2), A200403 15, (1243)]
(=,#), A000124 Central polygonal numbers (lazy
caterer’s sequence)
(>,2). A071356 Motzkin paths of length n with up and
level steps coming in two colors
(==)e A052169 (o))} =dyyy
(#,<)e A000071 F,42 — 1, where F,1 is the (n+2)th
Fibonacci number
(#,=)c A000522 Number of 01 —avoiding rook monoids
(#,#)e A000085 Number of involutions of [n]
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Pattern I,,(>, <).

Observation. (Martinez—Savage)
e € I,(>, <), iff there exists k
such that

e1 <ex <o <ep > epp1 > e,
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The Pattern I,(>, <).

Observation. (Martinez—Savage)
e € I,(>, <), iff there exists k

such that .
e1 <ep <o <ep > epg1 > ey )

o T2 3 4 s s 7 8 9

Theorem. The sequence |I,, (>, <) | has OGF,

1 =22 — 1 —4dr — 422

A(z)

42
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The Pattern I,(>, <).

Observation. (Martinez—Savage)
e € I,(>, <), iff there exists k
such that

e1 <ex <o <ep > epp1 > e,

Theorem. The sequence |I,, (>, <) | has OGF,

1 =22 — 1 —4dr — 422

Alz) 4a2
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e Pattern I,(>, <),

Observation. (Martinez—Savage)
e € I,(>, <), iff there exists k
such that

e1 <ex <o <ep > epp1 > e,

T 2 s 4 5 6 7 8 9

Theorem. The sequence |I,, (>, <) | has OGF,

1 =22 — 1 —4dr — 422

42

A(z)

Moreover:

o Let dist(e) be the number of distinct elements of e. Then
Deel, (>,<) y¥t() is unimodal and palindromic (conjectured by
Martinez—Savage).

e We can count all variations of unimodal inversion sequences (also
according to dist(e)).
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