Consecutive Patterns in Inversion Sequences

Juan S. Auli

Permutation Patterns 2018 Dartmouth College

Joint work with Sergi Elizalde

An inversion sequence of length n is an integer sequence $e = e_1 e_2 \cdots e_n$ such that $0 \le e_i < i$. The set of all inversion sequences e of length n is denoted by \mathbf{I}_n .

An inversion sequence of length n is an integer sequence $e = e_1 e_2 \cdots e_n$ such that $0 \le e_i < i$. The set of all inversion sequences e of length n is denoted by \mathbf{I}_n .

Example. $e = 00213 \in I_5$.

An inversion sequence of length n is an integer sequence $e = e_1 e_2 \cdots e_n$ such that $0 \le e_i < i$. The set of all inversion sequences e of length n is denoted by \mathbf{I}_n .

Example. $e = 00213 \in I_5$.

An inversion sequence of length n is an integer sequence $e = e_1 e_2 \cdots e_n$ such that $0 \le e_i < i$. The set of all inversion sequences e of length n is denoted by \mathbf{I}_n .

Example. $e = 00213 \in I_5$.

We can encode permutations as inversion sequences by defining a bijection $\Theta: S_n \to \mathbf{I}_n$, where $\Theta(\pi) = e = e_1 e_2 \cdots e_n$ is and

$$e_i = |\{j : j < i \text{ and } \pi_j > \pi_i\}|.$$

For instance, $\Theta(35142) = 00213$.

Classical Patterns

- The reduction of e ∈ I_n is the word obtained by replacing the *i*th smallest entry of e with i − 1.
- We say e contains the (classical) pattern $p = p_1 p_2 \cdots p_l$ if there exist $i_1 < i_2 < \cdots < i_l$ such that the reduction of $e_{i_1} e_{i_2} \cdots e_{i_l}$ is p. Otherwise, e avoids p.

Example. e = 00213 contains 012 and 001. But it avoids 201 and 110.

Classical Patterns

- The reduction of e ∈ I_n is the word obtained by replacing the *i*th smallest entry of e with i − 1.
- We say e contains the (classical) pattern $p = p_1 p_2 \cdots p_l$ if there exist $i_1 < i_2 < \cdots < i_l$ such that the reduction of $e_{i_1} e_{i_2} \cdots e_{i_l}$ is p. Otherwise, e avoids p.

Example. e = 00213 contains 012 and 001. But it avoids 201 and 110.

We denote $I_n(p) = \{e \in I_n : e \text{ avoids } p\}$. For instance, $I_3(001) = \{000, 010, 011, 012\}$.

The avoidance sequences $|\mathbf{I}_n(p)|$ have been studied by Corteel, Martinez, Savage and Weselcouch. Independently by Mansour and Shattuck.

$$\begin{split} |\mathbf{I}_n(012)|: \mbox{ Boolean permut.} & |\mathbf{I}_n(012)|: \\ |\mathbf{I}_n(021)|: \mbox{ Large Schröder numb.} & |\mathbf{I}_n(012)|: \\ |\mathbf{I}_n(012)|: \mbox{ Large Sch$$

 $|\mathbf{I}_n(000)|$: Euler up/down numb. $|\mathbf{I}_n(011)|$: Bell numb.

Consecutive Patterns

We say $e \in \mathbf{I}_n$ contains the (consecutive) pattern $p = \underline{p_1 p_2 \cdots p_l}$ if there exists *i* such that $e_i e_{i+1} \cdots e_{i+l-1}$ has reduction *p*. Otherwise, we say *e* avoids *p*.

Example. e = 0023013 avoids <u>000</u> and <u>010</u>, but it contains <u>012</u> and <u>120</u>.

We consider the problem of determining the sequence $|\mathbf{I}_n(p)|$ for consecutive patterns $p = p_1 p_2 \cdots p_l$.

Our Results for Consecutive Patterns of Length 3

We denote $\mathbf{I}_{n,k}(p) = \{e \in \mathbf{I}_n(p) : e_n = k\}.$

Our Results for Consecutive Patterns of Length 3

We denote $\mathbf{I}_{n,k}(p) = \{e \in \mathbf{I}_n(p) : e_n = k\}.$

Pattern p	in the OEIS?	Observations about $ \mathbf{I}_n(p) $
012	A049774	Counts $ S_n(\underline{321}) $
<u>021</u>	A071075	Counts $ S_n(\underline{1324}) $
<u>102</u>	New	$\left \mathbf{I}_{n,k}\left(p\right)\right = \left \mathbf{I}_{n-1}\left(p\right)\right - \sum_{j \ge 1} j \cdot \left \mathbf{I}_{n-2,j}\left(p\right)\right $
<u>120</u>	A200404	Counts $ S_n(\underline{1432}) $
<u>201</u>	New	$\left \mathbf{I}_{n,k}\left(p\right)\right = \left \mathbf{I}_{n-1}\left(p\right)\right - k\sum_{j>k}\left \mathbf{I}_{n-2,j}\left(p\right)\right $
<u>210</u>	New	$\left \mathbf{I}_{n,k}(p)\right = \left \mathbf{I}_{n-1}(p)\right - \sum_{m>k} \sum_{j>m} \sum_{i\leq j} \left \mathbf{I}_{n-3,i}(p)\right $
Pattern p	in the OEIS?	Observations about $ \mathbf{I}_n(p) $
<u>000</u>	A052169	Equals $\frac{(n+1)!-d_{n+1}}{n}$, where d_n is the number of de-
001	New	$ \mathbf{I}_{n,k}(n) = \mathbf{I}_{n-1}(n) - \sum_{i < k} \mathbf{I}_{n-2,i}(n) $
010	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - (n-2-k) \mathbf{I}_{n-2,k}(p) $
011	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{j < k} \mathbf{I}_{n-2,j}(p) \text{ if } k \neq n-1,$
100.110	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{i > k} \mathbf{I}_{n-2,i}(p) $
101	New	$\left \mathbf{I}_{n,k}\left(p\right)\right = \left \mathbf{I}_{n-1}\left(p\right)\right - k\left \mathbf{I}_{n-2,k}\left(p\right)\right $

Recurrences

A recurrence for the pattern $p = \underline{110}$:

$$|\mathbf{I}_{n,k}(p)| = |\mathbf{I}_{n-1}(p)| - \sum_{j>k} |\mathbf{I}_{n-2,j}(p)|,$$

with
$$|\mathbf{I}_0(p)| = 1$$
 and $\mathbf{I}_n(p) = \sum_{j=0}^{n-1} |\mathbf{I}_{n,j}(p)|$.

Recurrences

A recurrence for the pattern $p = \underline{110}$:

$$|\mathbf{I}_{n,k}(p)| = |\mathbf{I}_{n-1}(p)| - \sum_{j>k} |\mathbf{I}_{n-2,j}(p)|,$$

with
$$|\mathbf{I}_0(p)| = 1$$
 and $\mathbf{I}_n(p) = \sum_{j=0}^{n-1} |\mathbf{I}_{n,j}(p)|$.

For the pattern p = 000:

• Recurrence. $|\mathbf{I}_n(p)| = (n-1) |\mathbf{I}_{n-1}(p)| + (n-2) |\mathbf{I}_{n-2}(p)|.$

• EGF.
$$2 - \frac{1}{e} \text{Ei}(1) + \frac{x e^x - 1}{e^x(1 - x)} + \log \frac{1}{1 - x} + \frac{1}{e} \text{Ei}(1 - x)$$
, with
Ei $(x) = -\int_{-x}^{\infty} \frac{e^{-t}}{t} dt$.

Recurrences

A recurrence for the pattern $p = \underline{110}$:

$$|\mathbf{I}_{n,k}(p)| = |\mathbf{I}_{n-1}(p)| - \sum_{j>k} |\mathbf{I}_{n-2,j}(p)|,$$

with
$$|\mathbf{I}_0(p)| = 1$$
 and $\mathbf{I}_n(p) = \sum_{j=0}^{n-1} |\mathbf{I}_{n,j}(p)|$.

For the pattern p = 000:

- Recurrence. $|\mathbf{I}_n(p)| = (n-1) |\mathbf{I}_{n-1}(p)| + (n-2) |\mathbf{I}_{n-2}(p)|.$
- EGF. $2 \frac{1}{e} \text{Ei}(1) + \frac{x e^x 1}{e^x(1-x)} + \log \frac{1}{1-x} + \frac{1}{e} \text{Ei}(1-x)$, with Ei $(x) = -\int_{-x}^{\infty} \frac{e^{-t}}{t} dt$.
- Closed form. $|\mathbf{I}_n(p)| = \frac{(n+1)!}{n} \left(1 \sum_{j=0}^{n+1} \frac{(-1)^j}{j!}\right).$

We say two consecutive patterns p and p' are:

• Wilf equivalent, denoted $p \sim p'$, if for all n,

 $|\mathbf{I}_{n}(p)| = |\mathbf{I}_{n}(p')|.$

• Strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p'$, if for all n and m,

 $|\{e \in \mathbf{I}_n : e \text{ has } m \text{ occur. of } p\}| = |\{e \in \mathbf{I}_n : e \text{ has } m \text{ occur. of } p'\}|.$

• If the above condition holds for any set of positions for the m occurrences, then p and p' are super strongly Wilf equivalent, denoted $p \stackrel{ss}{\sim} p'$.

We say two consecutive patterns p and p' are:

• Wilf equivalent, denoted $p \sim p'$, if for all n,

 $|\mathbf{I}_{n}(p)| = |\mathbf{I}_{n}(p')|.$

• Strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p'$, if for all n and m,

 $|\{e \in \mathbf{I}_n : e \text{ has } m \text{ occur. of } p\}| = |\{e \in \mathbf{I}_n : e \text{ has } m \text{ occur. of } p'\}|.$

• If the above condition holds for any set of positions for the m occurrences, then p and p' are super strongly Wilf equivalent, denoted $p \stackrel{ss}{\sim} p'$.

Example. e = 0023013 has two occurrences of the pattern <u>012</u>; in positions 2 and 5.

The Patterns 100 and 110 are Equivalent

Proof 1. $|\mathbf{I}_n(\underline{100})|$ and $|\mathbf{I}_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

The Patterns 100 and 110 are Equivalent

Proof 1. $|\mathbf{I}_n(\underline{100})|$ and $|\mathbf{I}_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

Proof 1+ ϵ . With an inductive argument; <u>100</u> $\stackrel{s}{\sim}$ <u>110</u>.

The Patterns 100 and 110 are Equivalent

Proof 1. $|\mathbf{I}_n(\underline{100})|$ and $|\mathbf{I}_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

Proof 1+ ϵ . With an inductive argument; <u>100</u> $\stackrel{s}{\sim}$ <u>110</u>.

Proof 2. (Sketch of $\underline{100} \stackrel{ss}{\sim} \underline{110}$)

• For p = 100, 110, define

 $\mathsf{Em}(p,e) = \{i : e_i e_{i+1} e_{i+2} \text{ is an occur. of } p\}.$

Onstruct a bijection

 $\{e \in \mathbf{I}_n : \mathsf{Em}(\underline{100}, e) \supset S\} \longleftrightarrow \{e \in \mathbf{I}_n : \mathsf{Em}(\underline{110}, e) \supset S\}.$

3 Use inclusion-exclusion to see

 $|\{e \in \mathbf{I}_n : \mathsf{Em}(\underline{100}, e) = S\}| = |\{e \in \mathbf{I}_n : \mathsf{Em}(\underline{110}, e) = S\}|.$

This is the only equivalence between consecutive patterns of length 3.

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

- $\underline{2013} \stackrel{ss}{\sim} \underline{2103}$
- $\underline{3012} \stackrel{ss}{\sim} \underline{3102}$
- $\underline{0100} \stackrel{ss}{\sim} \underline{0110}$
- $\underline{1000} \stackrel{ss}{\sim} \underline{1110}$
- $\underline{1101} \stackrel{ss}{\sim} \underline{1001} \stackrel{ss}{\sim} \underline{1011}$
- $\underline{0021} \stackrel{ss}{\sim} \underline{0121}$

- $\underline{1002} \stackrel{ss}{\sim} \underline{1102} \stackrel{ss}{\sim} \underline{1012}$
- $\underline{2001} \stackrel{ss}{\sim} \underline{2101} \stackrel{ss}{\sim} \underline{2011} \stackrel{ss}{\sim} \underline{2201}$
- $\underline{1200} \stackrel{ss}{\sim} \underline{1210} \stackrel{ss}{\sim} \underline{1220}$
- $\underline{2100} \stackrel{ss}{\sim} \underline{2210}$
- $\underline{0211} \stackrel{ss}{\sim} \underline{0221}$
- $\underline{2012} \stackrel{ss}{\sim} \underline{2102}$

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

- $\underline{2013} \stackrel{ss}{\sim} \underline{2103}$
- $\underline{3012} \stackrel{ss}{\sim} \underline{3102}$
- $\underline{0100} \stackrel{ss}{\sim} \underline{0110}$
- $\underline{1000} \stackrel{ss}{\sim} \underline{1110}$
- $\underline{1101} \stackrel{ss}{\sim} \underline{1001} \stackrel{ss}{\sim} \underline{1011}$
- $\underline{0021} \stackrel{ss}{\sim} \underline{0121}$

- $\underline{1002} \stackrel{ss}{\sim} \underline{1102} \stackrel{ss}{\sim} \underline{1012}$
- $\underline{2001} \stackrel{ss}{\sim} \underline{2101} \stackrel{ss}{\sim} \underline{2011} \stackrel{ss}{\sim} \underline{2201}$
- $\underline{1200} \stackrel{ss}{\sim} \underline{1210} \stackrel{ss}{\sim} \underline{1220}$
- $\underline{2100} \stackrel{ss}{\sim} \underline{2210}$
- $\underline{0211} \stackrel{ss}{\sim} \underline{0221}$
- $\underline{2012} \stackrel{ss}{\sim} \underline{2102}$

Conjecture. Two consecutive (inversion sequence) patterns of length m are strongly Wilf equivalent if and only if they are Wilf equivalent.

Define the set $\mathbf{I}_n(R_1, R_2)_c$, with $R_i \in \{\leq, \geq, <, >, =, \neq\}$, consisting of inversion sequences $e \in \mathbf{I}_n$ for which there is no i such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$.

Define the set $\mathbf{I}_n(R_1, R_2)_c$, with $R_i \in \{\leq, \geq, <, >, =, \neq\}$, consisting of inversion sequences $e \in \mathbf{I}_n$ for which there is no *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$.

Example. Note that

- $0103323431 \notin \mathbf{I}_{10}(\geq, >)_c$, but
- $0023224337 \in \mathbf{I}_{10}(\geq, >)_c$

Define the set $\mathbf{I}_n(R_1, R_2)_c$, with $R_i \in \{\leq, \geq, <, >, =, \neq\}$, consisting of inversion sequences $e \in \mathbf{I}_n$ for which there is no *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$.

Example. Note that

- $0103323431 \notin \mathbf{I}_{10}(\geq, >)_c$, but
- $0023224337 \in \mathbf{I}_{10}(\geq, >)_c$

Define the set $\mathbf{I}_n(R_1, R_2)_c$, with $R_i \in \{\leq, \geq, <, >, =, \neq\}$, consisting of inversion sequences $e \in \mathbf{I}_n$ for which there is no *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$.

Example. Note that

- $0103323431 \notin \mathbf{I}_{10}(\geq, >)_c$, but
- $0023224337 \in \mathbf{I}_{10}(\geq, >)_c$

Theorem. A complete list of equivalences between consecutive patterns of relations of length 3 is as follows:

- $(\geq,\geq)_c \stackrel{ss}{\sim} (<,<)_c$
- $\bullet \ (\geq,<)_c \overset{ss}{\sim} (<,\geq)_c \overset{s}{\sim} (\neq,\geq)_c$
- $\bullet \ (\geq,>)_c \stackrel{ss}{\sim} (>,\geq)_c$

- $(\geq,=)_c \stackrel{ss}{\sim} (=,\geq)_c$
- $\bullet \ (>,=)_c \stackrel{ss}{\sim} (=,>)_c$

Define the set $\mathbf{I}_n(R_1, R_2)_c$, with $R_i \in \{\leq, \geq, <, >, =, \neq\}$, consisting of inversion sequences $e \in \mathbf{I}_n$ for which there is no *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$.

Example. Note that

- $0103323431 \notin \mathbf{I}_{10}(\geq, >)_c$, but
- $0023224337 \in \mathbf{I}_{10}(\geq, >)_c$

Theorem. A complete list of equivalences between consecutive patterns of relations of length 3 is as follows:

- $\bullet \ (\geq,\geq)_c \stackrel{ss}{\sim} (<,<)_c \qquad \bullet \ (\geq,=)_c \stackrel{ss}{\sim} (=,\geq)_c$
- $\bullet \ (\geq,<)_c \stackrel{ss}{\sim} (<,\geq)_c \stackrel{s}{\sim} (\neq,\geq)_c$
- $\bullet \ (\geq,>)_c \stackrel{ss}{\sim} (>,\geq)_c$

• $(>,=)_c \stackrel{ss}{\sim} (=,>)_c$

Reproving a result of Baxter–Pudwell:

Corollary. The generalized permutation patterns $\underline{1243}$ and $\underline{4213}$ are Wilf equivalent.

Our Results for Patterns of Relations

Connections to other combinatorial objects:

Pattern p	$ \mathbf{I}_n(p) $ in the OEIS as	OEIS description
$(\leq,\geq)_c$	A000027	n
$(\leq,>)_c$	A000108	C_n : Catalan numbers
$(\leq,\neq)_c$	A040000	$1, 2, 2, \dots$ (constant 2 for $n > 1$)
$(\geq,\leq)_c$	A000045	F_{n+2} : $(n+2)$ th Fibonacci number
$(\geq,\geq)_c \stackrel{ss}{\sim} (<,<)_c$	A049774	$ S_n\left(\underline{321}\right) $
$(\geq,<)_c \stackrel{ss}{\sim} (<,\geq)_c \stackrel{s}{\sim} (\neq,\geq)_c$	A000079	2^{n-1}
$(\geq,>)_c \stackrel{ss}{\sim} (>,\geq)_c$	A200403	$ S_n(\underline{124}3) $
$(\geq,\neq)_c$	A000124	Central polygonal numbers (lazy caterer's sequence)
$(>,\leq)_c$	A071356	Motzkin paths of length <i>n</i> with up and level steps coming in two colors
$(=,=)_{c}$	A052169	$\frac{(n+1)!-d_{n+1}}{n}$
$(eq,\leq)_c$	A000071	$F_{n+2} - 1$, where F_{n+2} is the $(n+2)$ th Fibonacci number
$(\neq,=)_c$	A000522	Number of 01-avoiding rook monoids
$(\neq,\neq)_c$	A000085	Number of involutions of $[n]$

Observation. (Martinez–Savage) $e \in \mathbf{I}_n(>, \leq)_c$ iff there exists k such that

 $e_1 \le e_2 \le \dots \le e_k > e_{k+1} > e_n.$

Observation. (Martinez–Savage) $e \in \mathbf{I}_n(>, \leq)_c$ iff there exists k such that $e_1 \leq e_2 \leq \cdots \leq e_k > e_{k+1} > e_n$.

Theorem. The sequence $|I_n(>,\leq)_c|$ has OGF,

$$A(x) = \frac{1 - 2x - \sqrt{1 - 4x - 4x^2}}{4x^2}.$$

Observation. (Martinez–Savage) $e \in \mathbf{I}_n(>, \leq)_c$ iff there exists k such that $e_1 \leq e_2 \leq \cdots \leq e_k > e_{k+1} > e_n$.

Theorem. The sequence $|I_n(>,\leq)_c|$ has OGF,

$$A(x) = \frac{1 - 2x - \sqrt{1 - 4x - 4x^2}}{4x^2}.$$

Observation. (Martinez-Savage) $e \in \mathbf{I}_n(>, \leq)_c$ iff there exists ksuch that $e_1 \leq e_2 \leq \cdots \leq e_k > e_{k+1} > e_n$.

Theorem. The sequence $|I_n(>,\leq)_c|$ has OGF,

$$A(x) = \frac{1 - 2x - \sqrt{1 - 4x - 4x^2}}{4x^2}.$$

Moreover:

- Let dist(e) be the number of distinct elements of e. Then $\sum_{e \in \mathbf{I}_n(>,\leq)} y^{\operatorname{dist}(e)}$ is unimodal and palindromic (conjectured by Martinez-Savage).
- We can count all variations of unimodal inversion sequences (also according to dist(e)).

References

- 🥫 Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences (In preparation).
- Andrew M. Baxter and Lara K. Pudwell, <u>Enumeration schemes for vincular patterns</u>, Discrete Math., 312 (2012), no. 10, 1699 –1712.
- Sylvie Corteel, Megan A. Martinez, Carla D. Savage and Michael Weselcouch, <u>Patterns in inversion</u> sequences I, Discrete Math. Theor. Comput. Sci., **18** (2016), no. 2, Paper No. 2, 21 pp.
- Tim Dwyer and Sergi Elizalde, <u>Wilf equivalence relations for consecutive patterns</u>, Adv. in Appl. Math., 99 (2018), 134–157.
- Sergi Elizalde, <u>A survey of consecutive patterns in permutations</u>, Recent trends in combinatorics, IMA Vol. Math. Appl., **159** (2016), 601–618.
- Toufik Mansour and Mark Shattuck, <u>Pattern avoidance in inversion sequences</u>, Pure Math. Appl. (PU.M.A.), 25 (2015), no. 2, 157–176.
- Megan A. Martinez and Carla D. Savage, <u>Patterns in inversion sequences II: Inversion sequences avoiding</u> triples of relations, Journal of Integer Sequences, **21** (2018), Issue 2, Article 18.2.2.