
Welcome to Dartmouth!

We’re so pleased to welcome you to Dartmouth College and to Hanover, New Hamp-
shire for Permutation Patterns 2018. We hope that you enjoy the conference and all
the College and the Upper Valley have to offer. We encourage you to take some time
this week to explore the beautiful and historic Dartmouth campus—see the Things to
Do section for a few suggestions.

If you need anything during your stay, please don’t hesitate to reach out to one of our
local organizers or our department administrators, Tracy Moloney and Amy Potter,
all of whom will have special nametags with a black background.

Whether you came from down the street or across the globe, thank you for trekking
your way here through the woods of New Hampshire and we hope you have a fun
and productive week!

Sincerely yours,
Jay Pantone
Organizing Committee chair

Sponsors

Permutation Patterns 2018 is generously supported by the Dean of the Faculty Of-
fice at Dartmouth College through the Conant 1879 Memorial Lectureship and the
Robert 1931 and Ruth Fraser Funds, by the Department of Mathematics at Dartmouth
College, by NSF grant DMS-1764236, and by NSA grant H98230-18-1-0231.
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Local Information

Important Numbers

Mathematics Department (603) 646-2415, Mon–Fri, 8am–4pm
Jay Pantone (561) 635-2392
Tracy Moloney (603) 646-3723, Kemeny 102D
Safety and Security (603) 646-4000
Pin code for Berry and Bildner Halls 6188#

Dartmouth Hitchcock Medical Center is located 3 miles from campus. The main num-
ber is (603) 650-5000. You should call 911 if you have a medical emergency.

Campus Dining

The main campus dining hall is ’53 Commons, known to Dartmouth students as Foco.
’53 Commons has all-you-can-eat buffet-style service and offers quite a wide variety of
options. They have a dedicated meat-free vegetarian kitchen and a dairy-free kosher
kitchen. Their hours are

Monday – Saturday Sunday
Breakfast 7:00am – 10:30am

7:00am – 2:30pm
Lunch 11:00am – 2:30pm
Dinner 5:00pm – 8:30pm 5:00pm – 8:30pm

Note that ’53 Commons does not close between breakfast and lunch on Sundays.

Participants staying in the dormitories have received a meal card as part of their
accommodation costs. Breakfast, lunch, and dinner are included Monday–Friday for
any days for which you’re spending the night (for example, if you’re staying in the
dorms Thursday night, then your card has meals for Thursday). The cards do not
include dinner on Tuesday (the night of the conference banquet).

Those without meal cards can pay at the door: $7.75 for breakfast, $10.75 for lunch,
and $14.95 for dinner.

Local Restaurants

There are a surprising number of restaurants within walking distance. A few that we
can recommend are Base Camp Cafe (Nepalese cuisine), C&A Pizza, Candela Tapas,
Canoe Club, Dirt Cowboy Cafe, Jewel of India, Lou’s Restaurant & Bakery, Molly’s
Restaurant & Bar, Morano Gelato, Murphy’s on the Green, Orient Restaurant, Pine
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(quite expensive), Ramunto’s Brick & Brew Pizzeria, Salt Hill Pub, Sushi-ya, and Tuk
Tuk Thai.

Feel free to ask any of the local organizers for recommendations!

Wifi

The Dartmouth Public wifi network is open for any participants to use throughout
campus. Eduroam is also available for those who already have access via their institu-
tions.

Parking

Parking passes are required to park on campus on weekdays from 6:00am to 5:00pm.
All participants must park in Dewey Lot on the North edge of campus. There is a
map of campus later in this program.

Gym Passes

The main Dartmouth gym is located at 16 East Wheelock Street. It has a pool, exercise
machines, squash courts, and an indoor track. You can buy day passes at the entrance
to the gym for $10.

Things to Do

See the Orozco Murals in Baker Library
José Clemente Orozco (1883–1959) was a Mexican social realist painter. One of his
most famous murals is the Epic of American Civilization, which covers 3200 square feet
in the basement of Baker Library.

Visit the Life Sciences Greenhouse
The Life Sciences Greenhouse has an extensive and varied plant collection with a wide
range of diversity, utility, and beauty. Among the most popular and diverse of their
collections is the Brout Orchid Collection, home to about a thousand orchids of many
species and hybrids. The orchid collection is in two rooms. There are three other
rooms open to the public: a tropical room, a sub-tropical room, and a xeric room
housing cacti and succulents. The Life Sciences building is next to the Dewey parking
lot.

Go for a walk
Dartmouth’s campus is full of historic landmarks such as Bartlett Tower, a statue of
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Robert Frost (who was a Dartmouth student for a very brief time in the 1890s), and
Webster Cottage.

Go for a hike
Hiking maps are available at the Dartmouth Outing Club in Robinson Hall.

Explore Vermont
Notable Vermont attractions include the Queeche gorge, Woodstock and the Long
Trail Brewery.
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Conference Events

Welcome Reception

Sunday, 5:30pm–7:30pm, Occom Commons / Goldstein Hall
Please join us for hamburgers, hotdogs, and refreshments at Occom Commons in
Goldstein Hall. Goldstein Hall is directly adjacent to the conference dormitories,
Berry and Bildner Halls.

Poster Session

Monday, 5:00pm–7:00pm, Occom Commons / Goldstein Hall
The poster session will be held on Monday evening. There will be hors d’oeuvres and
refreshments. The following posters will be presented.

K block set partition patterns and statistics, Amrita Acharyya
Some relations on prefix reversal generators of the symmetric and

hyperoctahedral group, Charles Buehrle
A family of Bell transformations, Juan B. Gil and Michael D. Weiner
Permutations sorted by a finite and an infinite stack in series,

Yoong Kuah Goh
Connecting descent and peak polynomials, Ezgi Kantarci Oğuz
Permutation packing in words of the form ππr and ππ, Julia

Krull, Eric Redmon, and Andrew Reimber-Berg
On the distribution of statistics for pattern avoiding

permutations, Jacob Roth
A Domino tableau-based view on type B Schur-positivity,

Ekaterina A. Vassilieva

Conference Banquet

Tuesday, 6:00pm–, Dartmouth Outing Club House
The conference banquet will be held on Tuesday at the Dartmouth Outing Club House
on the North edge of Occom Pond. Hors d’oeuvres and beverages will be served
starting at 6pm, and we’ll sit down for dinner at 7pm. Please feel free to arrive any
time between 6pm and 7pm.
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Conference Excursions

Wednesday afternoon There are two excursion options: hiking up Mount Cardigan
and canoeing on the Connecticut River. Those who wish to hike up Mount Cardigan
will hop on a bus after the last talk on Wednesday morning. A box lunch will be
provided. Canoes will be reserved at the Ledyard Canoe Club (the time of the reser-
vation will be announced early in the week). There is no extra charge for either of
these options.
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Campus Map
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Sunday, July 8

2:00–8:00 Registration in Occom Commons, Goldstein Hall

5:30–7:30 Welcome Reception and Registration in Occom Commons, Gold-
stein Hall

8:00– After 8:00pm, participants staying in the dorms should call or
text 1-561-635-2392 upon arrival.
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Monday, July 9

All talks are in Kemeny 008

8:00–8:50 Registration outside of Kemeny 008

8:50–9:00 Conference Welcome

9:00–9:25 The local structure of permutations with given inver-
sion density, David Bevan

9:30–9:55 The prolific proportion of permutations, Cheyne
Homberger

10:00–10:25 Pattern avoidance in rooted forests, Kassie Archer

10:30–11:00 Refreshments

11:00–11:25 Local convergence for random permutations and the
case of uniform ρ-avoiding permutations with |ρ| = 3,
Jacopo Borga

11:30–11:55 Wilf collapse in permutation classes, Michael Albert

12:00–2:00 Lunch

2:00–2:25 Knots and permutations, Chaim Even-Zohar

2:30–2:55 Universal permutations, Michael Engen

3:00–3:30 Refreshments

3:30–3:55 A,B-minimial Stirling numbers, Brian Miceli

4:00–4:25 Enumerating permutations sortable by k passes
through a pop-stack, Anders Claesson

5:00–7:00 Poster Session in Occom Commons, Goldstein Hall
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Tuesday, July 10

All talks are in Kemeny 008

9:00–9:25 Enumerative and algebraic combinatorics of OEIS
A071356, Chetak Hossain

9:30–9:55 Recognizing merge classes, Michal Opler

10:00–10:25 On the growth of merges and staircases of permuta-
tion classes, Jay Pantone

10:30–11:00 Refreshments

11:00–11:55 Plenary Talk: Patterns in standard young tableaux,
Sara Billey

12:00–2:00 Lunch

2:00–2:25 Combinatorial exploration of permutation classes,
Christian Bean

2:30–2:55 Automatic enumeration of grid classes, Unnar Erlends-
son

3:00–3:30 Refreshments

3:30–3:55 On two-sided gamma-positivity for simple permuta-
tions, Shulamit Reches and Moriah Sigron

4:00–4:25 Homomorphisms on noncommutative symmetric
functions and permutation enumeration, Yan Zhuang

4:30–5:00 Problem Session

6:00– Banquet — Hors d’oeuvres and refreshments start at 6:00,
dinner starts at 7:00. Please join us any time between 6:00
and 7:00.
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Wednesday, July 11

All talks are in Kemeny 008

The Wednesday morning session is dedicated to the memory of Jeff Remmel.

9:00–9:25 Jeff Remmel as his students knew him, Jeff Liese, Brian
Miceli, and Manda Riehl

9:30–10:25 Jeff Remmel’s mathematical legacy, Tony Mendes

10:30–11:00 Refreshments

11:00–11:25 Classical permutation distribution in Sn(132) and
Sn(123), Dun Qiu

11:30–11:55 Enumeration of super-strong Wilf equivalence classes
of permutations, Ioannis Michos

12:00– Free Afternoon
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Thursday, July 12

All talks are in Kemeny 008

9:00–9:25 Pattern avoidance in Motzkin paths, Dan Daly

9:30–9:55 Rook and Wilf equivalence of integer partitions,
Jonathan Bloom

10:00–10:25 Shuffle-compatibility for the exterior peak set, Darij
Grinberg

10:30–11:00 Refreshments

11:00–11:55 Plenary Talk: Permutation classes and infinite an-
tichains, Robert Brignall

12:00–2:00 Lunch

2:00–2:25 Stack sorting with increasing and decreasing stacks,
Luca Ferrari

2:30–2:55 Thresholds of growth rates of sum-closed classes,
Justin Troyka

3:00–3:30 Refreshments

3:30–3:55 On the distribution of peaks (and other statistics),
Lara Pudwell

4:00–4:25 Some 1× k generalized grid classes are context-free,
Jakub Sliačan
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Friday, July 13

All talks are in Kemeny 008

9:00–9:25 The undecidability of the joint embedding prop-
erty for finitely-constrained hereditary graph classes,
Samuel Braunfeld

9:30–9:55 Stack sorting tiers, Howard Skogman

10:00–10:25 Stack sorting r-tiers, Rebecca Smith

10:30–11:00 Refreshments

11:00–11:25 Unknotted cycles, Nathan McNew

11:30–11:55 Consecutive patterns in inversion sequences, Juan
Auli

12:00–2:00 Lunch

2:00–2:25 The principal Möbius function of permutations with
opposing adjacencies, David Marchant

2:30–2:55 Pattern-avoiding permutations and Dyson Brownian
motion, Erik Slivken

3:00–3:25 The substitution decomposition of matchings and
RNA secondary structures, Vince Vatter
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Saturday, July 14

11:00 Check out time for dorms (leave keys in the key drop off box)
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Rarely Asked Questions

Where does the name Dartmouth come from?

The college is named for William Legge, the second Earl of Dartmouth, whose gener-
ous contribution of £50 helped found the college.

Why isn’t it called Dartmouth University?

While the school has granted graduate and professional degrees for most of its his-
tory, Dartmouth has resisted the “university” label because of an old legal battle with
the state of New Hampshire. In 1816, New Hampshire amended Dartmouth’s charter
to make it a public school. This lead to two schools in Hanover: the newly created
Dartmouth University, which occupied the buildings, and the remnants of Dartmouth
College, which continued operation in rented rooms and filed suit against the state.
The College lost its suit in both local and state courts, and appealed to the United
States Supreme Court. Daniel Webster, an 1801 alumnus, represented the College and
delivered his famous words “It is, Sir, as I have said, a small college. And yet there are
those who love it.” The Supreme Court ruled in Spring 1819 in favor of the College.

What’s the deal with all the Dr. Seuss stuff?

Theodor Geisel was a member of the class of 1925 and an editor of the school’s humor
magazine the Jack-O-Lantern. His senior year he held a party for all of the Jack-O-
Lantern staff, and the party got out of hand. The College punished him by forcing
him to resign from the Jack-O-Lantern. Geisel continued to write for the magazine
under the pseudonym Seuss, his mother’s maiden name. His graduating class voted
Geisel the least likely to succeed.

Which fraternity is Animal House based on?

Alpha Delta, commonly referred to as AD, located on Wheelock Street across from
the gym. They’ve recently been derecognized, so don’t expect any loud parties!

Has Hanover ever been part of Vermont?

Yes, twice.

How many laps of the green equals one mile?

Roughly two and three-quarters.

Why is green the color of Dartmouth?

In the 1860s, Dartmouth decided that its sports teams needed a color. Green was
chosen because “it was the only decent color that had not been taken already.”
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K Block Set Partition Patterns and Statistics

Amrita Acharyya University of Toledo

A set partition σ of [n] = {1, ..., n} contains another set partition π if restricting σ to
some S ⊆ [n] and then standardizing the result gives π. Otherwise, we say σ avoids
π. For all sets of patterns consisting of partitions of [3], the sizes of the avoidance
classes are determined by Sagan and by Goyt. Set partitions are in bijection with
restricted growth functions (RGFs) for which Wachs and White defined four funda-
mental statistics. Sagan, Dahlberg, Dorward, Gerhard, Grubb, Purcell, Reppuhn con-
sider the distributions of these statistics over various avoidance classes, thus obtaining
multivariate analogues of the previously cited cardinality results. They did the first
in-depth study of such distributions in [1]. The analogues of their many results in [1]
follows for set partitions with exactly k blocks for a specified positive integer k. These
analogues are discussed in this work.

There has been an explosion of papers recently dealing with pattern containment and
avoidance in various combinatorial structures. And the study of statistics on combina-
torial objects has a long and venerable history. By comparison, there are relatively few
papers which study a variety of statistics on a number of different avoidance classes.
The focus of the present work is pattern avoidance in set partitions with k blocks com-
bined with four important statistics defined by Wachs and White [4]. Sagan, Dahlberg,
Dorward, Gerhard, Grubb, Purcell, Reppuhne, did the first comprehensive study of
these statistics on avoidance classes in [1]. In particular, consider the distribution of
these statistics over every class avoiding a set of partitions of {1, 2, 3}. We should note
that there are other statistics on the family of all set partitions which have yielded
interesting results. For example, there is a bijection between set partitions and rook
placements on a triangular board. Garsia and Remmel [2] defined two statistics on
rook placements giving q-analogues of the Stirling numbers of the second kind which
inspired the work of Wachs and White. And set partitions avoiding certain patterns
have received special attention. To illustrate, those avoiding the partition 123 are just
matchings or equivalently involutions. An interesting statistic on matchings viewed
in the setting of rook theory was given by Haglund and Remmel [3]. Let us start
by providing the necessary definitions and setting notations according as in [1]. A
set partition of a set S is a collection σ of nonempty subsets whose disjoint union
is S. We write σ = B1/B2/...Bk ` S where the subsets Bi are called blocks. When
no confusion will result, we often drop the curly braces and commas in the Bi. For
[n] = {1, ..., n}, we use the notation Πn = {σ : σ ` [n]}. To define pattern avoidance
in this setting, suppose σ = B1/.../Bk ∈ Πn and S ⊆ [n]. Then σ has a corresponding
sub partition σ′ whose blocks are the nonempty intersections Bi

⋂
S. For example, if

σ = 14/236/5 ` [6] and S = {2, 4, 6} then σ′ = 26/4. We standardize a set partition
with integral elements by replacing the smallest element by 1, the next smallest by
2, and so forth. So the standardization of σ′ above is 13/2. Given two set partitions
σ and π, we say that σ contains π as a pattern if there is a subpartition of σ which
standardizes to π. Otherwise we say that σ avoids π. Continuing our example, we
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have already shown that σ = 14/236/5 contains 13/2. But σ avoids 123/4 because
the only block of σ containing three elements also contains the largest element in σ,
so there can be no larger element in a separate block. We let Πn(π) = {σ ∈ Πn : σ

avoids π}. In order to connect set partitions with the statistics of Wachs and White,
we will have to convert them into restricted growth functions. A restricted growth
function (RGF) is a sequence w = a1...an of positive integers subject to the restrictions

1. a1 = 1.

2. For i ≥ 2 we have ai ≤ 1 + max{a1, ..., ai−1}

The number of elements in w is called its length and let Πn,k be the set of all words
in Πn with exactly k blocks. We let Πn,k(π) be the set of all words in Πn with exactly
k blocks that avoids π, Rn = {w : w is an RGF of length n}. Let, Rn,k = {w : w
is an RGF of length n with exactly k blocks }, that is Rn,k = {w : w is an RGF
of length n with maximal letter k}. There is a simple bijection Πn 7→ Rn. We say
σ = B1/.../Bk ∈ Πn is in standard form if min B1 < ... < min Bk. Note that this forces
min B1 = 1. We henceforth assume all partitions in Πn are written in standard form.
Associate with σ the word w(σ) = a1...an where ai = j if and only if i ∈ Bj. Using
the example from the previous paragraph w(σ) = 122132. It is easy to see that w(σ)
is a restricted growth function and that the map σ 7→ w(σ) is the desired bijection.
Note that the restriction of the above bijection is a bijection from Πn,k 7→ Rn,k. It will
be useful to have a notation for the RGFs of partitions avoiding a given pattern π,
namely Rn(π) = {w(σ) : σ ∈ Πn(π)}. One can express the notion of partition pattern
avoidance directly in the language of restricted growth functions. The canonization
of a sequence v = b1...bk of integers is obtained by replacing all copies of the first
element of v by 1, all copies of the second different element to appear in v by 2, and
so on. For example v = 55533522312 canonizes to 11122133243. It follows easily
from the definition that the canonization of v is always an RGF. Sagan described the
set partitions in Πn(π) for each π ∈ Π3. Define the initial run of an RGF w to be
the longest prefix of the form 12...m. Also, we will use the notation al to indicate a
string of l consecutive copies of the letter a in a word. Finally, say that w is layered if
w = 1n12n2 ...mnm for positive integers n1, n2, ..., nm. It will be further useful to have a
notation for the RGFs of partitions with exactly k blocks avoiding a given pattern π,
namely Rn,k(π) = {w(σ) : σ ∈ Πn,k(π)}.

We started developing the analogues from the analogue of Theorem 1.2 in [1].
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Wilf Collapse in Permutation Classes

Michael Albert University of Otago

This talk is based on joint work with Vít Jelínek and Michal Opler

Let C be a permutation class and consider the equivalence relation ∼ defined on C by
π ∼ τ whenever the two permutation classes Cπ := C ∩Av(π) and Cτ := C ∩Av(τ)
are Wilf-equivalent, i.e., have the same generating function.

Clearly π ∼ τ implies |π| = |τ| so for each positive integer n it makes sense to define
wn = |Cn/∼| (where Cn is the set of permutations in C of size n) and cn = |Cn| and to
ask:

Question 1. Aside from the trivial observation that wn ≤ cn what can be said about the
relationship between wn and cn?

In previous work Mathilde Bouvel and I had observed that for C = Av(312), wn =
o(2.5n) while of course c1/n

n → 4 so in particular wn < rncn for some constant r < 1
and all sufficiently large n. We call this phenomenon an exponential Wilf-collapse. More
formally:

Definition 2. The class C exhibits a Wilf-collapse if wn = o(cn), and an exponential
Wilf-collapse if there is some constant r < 1 such that wn = o(rncn).

Given the attention that has been focussed on particular instances of Wilf-equivalence
one might expect that Wilf-collapses, let alone exponential Wilf-collapses are rare. It
seems though that this is not the case. Aside from many specific examples (such as
Av(312) noted above) we can prove the following:

Theorem 3. Let C be any sum-closed class having only finitely many sum-indecomposable
permutations. Then C has an exponential Wilf-collapse unless C is the class of increasing
permutations.

Furthermore,

Theorem 4. Let C be any class having only finitely many sum-indecomposable permutations.
Then C has a Wilf-collapse unless (cn) is a bounded sequence.

While these results are quite specific they seem to fit into a broader framework that we
hope can be used to show that (exponential) Wilf-collapse is the ‘expected’ behaviour
in most permutation classes.
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Rooted Forests That Avoid Sets of Permutations

Kassie Archer The University of Texas at Tyler

This talk is based on joint work with Katie Anders

Our objects of study will be unordered (i.e. non-planar) rooted forests. Properties of
these forests have previously been studied extensively. In particular, there are many
interesting results regarding statistics on these trees and forests, such as descents
(both vertex-descents and edge-descents) [6, 7, 4], major index [11], inversions [12, 11],
leaves [6], hook length [3, 5], leaders (analogs of right-to-left minima) [7, 13, 8], and
many others. Additionally, increasing trees and forests, which avoid the pattern 21
in our context, have been widely studied and are useful combinatorial objects, as in
[10, 9, 1], and are easily enumerated (see [15]). Alternating trees, which avoid the
consecutive patterns 321 and 123 in our context, have also been enumerated in [2].

We study unordered rooted forests which avoid sets of permutations. In particular, we
show that there are two forest-Wilf classes for patterns of length three and we provide
enumerations for the sets of forests on [n] that avoid given sets of permutations of
lengths 3 and 4 by constructing bijections with certain types of set-partitions of [n] or
lists with special properties. The table in Figure 1 summarizes the results found so
far.

In the table in Figure 1, c(n, k), S(n, k), and B(n) denote the unsigned Stirling numbers
of the first kind, the Stirling numbers of the second kind, and the Bell numbers,
respectively. The unsigned Stirling numbers of the first kind, denoted by c(n, k) (or
[nk]), enumerate the permutations in Sn which can be decomposed into k disjoint cycles.
The Stirling numbers of the second kind, denoted by S(n, k), is the number of ways
to partition the set [n] into k nonempty subsets. The Bell numbers, denoted by B(n) is
the number of ways to partition the set [n] into subsets, i.e. it is the sum of the Stirling
numbers of the second kind for a fixed n.

Rooted forests

Let Fn denote the set of unordered rooted labeled forests on [n]. We draw forests as
rooted trees with an unlabeled root as in Figure 2.

We say that a labeled rooted forest on [n] avoids the pattern σ ∈ Sk if along each
path from the root to a vertex, the sequence of labels i1i2i3 . . . im do not contain a
subsequence that is in the same relative order as σ1σ2 . . . σk. Let Fn(σ) denote the set
of forests on [n] that avoid σ and let fn(σ) be the number of such forests. Notice that
Fn(21) is the set of increasing forests on [n] and Fn(12) is the set of decreasing forests
on [n].

It is well known that the number of increasing forests on [n] is fn(21) = n!. (Similarly,
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Forests Enumeration

Fn(213, 312) n

∑
k=1

k! c(n, k)
Fn(231, 132)

Fn(213, 312, 123) n

∑
k=1
B(n) c(n, k)

Fn(231, 132, 321)

Fn(213, 312, 321) n

∑
k=1

k! S(n, k)
Fn(231, 132, 123)

Fn(312, 213, 132)
n

∑
k=1

n!
k!

(
n− 1
k− 1

)
Fn(132, 231, 312)

Fn(321, 132, 213)

Fn(123, 312, 231)

Fn(213, 312, 231)
recurrence

Fn(231, 132, 213)

Fn(321, 2143, 3142)
n! + ∑

n!
2`

(
n− k− 1
`− 1

)(
k
`

)
Fn(123, 3412, 2413)

Figure 1: For each forest class listed, the sets of forests that avoid the certain sets
of permutations are enumerated. The sum associated to Fn(321, 2143, 3142) and
Fn(123, 3412, 2413) occurs over all 1 ≤ ` ≤ k ≤ n so that `+ k ≤ n.

2

13

6

4 5

3

9
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11

1

10

12

8 14

Figure 2: An example of a rooted forest on [14]. There are three trees in this forest
with roots labeled 2, 6, and 11.

the number of decreasing forests is fn(12) = n!.) Perhaps the easiest way to see this
is via induction. Any increasing forest on [n] must have the label n assigned to a
leaf. On a forest of n− 1 elements, there are n places one can add such a leaf (as a
child of the n− 1 vertices or as a root). Thus fn(21) = n · fn−1(21). Since there is one
forest of size one, there must be n! increasing forests. A natural bijection, which we
call ϕ, between permutations on an ordered set A and increasing forests on A can be
described in the following way (as in [15]): Given π ∈ Sn, the forest ϕ(π) is obtained
by letting all left-right minima be roots of the trees. For the remaining vertices, let i
be the child of the rightmost element j of π that precedes i and is less than i. Several
of the proofs make use of this bijection.
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In Figure 3, we see an example of this bijection. If π = 3, 6, 8, 4, 1, 10, 2, 9, 7, 5, then
the left-to-right minima 3 and 1 will be roots of trees in the increasing forest. Since 3
is the rightmost element to the left of 6 that is smaller than it, 6 will be a child of 3.
Similarly, 8 will be a child of 6. Since 3 is the rightmost element to the left of 4 that
is smaller than it, 4 will be a child of 3, and so on. The inverse of this bijection is to
traverse the forest clockwise starting at the root (after ordering the children of each
vertex least to greatest from left to right as in Figure 3), reading off each label as it is
reached.

1

2

5 7 9

10

3

4
6

8

Figure 3: The map ϕ sends a permutation of [n] to an increasing forest on [n]. The
forest pictured here is ϕ(3, 6, 8, 4, 1, 10, 2, 9, 7, 5).

Forest-Wilf-equivalence for patterns of size 3

An analog of Wilf-equivalence can be defined for rooted forests as follows. The
pattern σ is forest-Wilf-equivalent to the pattern τ if fn(σ) = fn(τ). A set of pat-
terns S = {σ1, . . . , σk} is forest-Wilf-equivalent to a set of patterns T = {τ1, . . . , τ`} if
fn(σ1, . . . , σk) = fn(τ1, . . . , τ`). The trivial symmetry of complementation of permuta-
tions can be adapted to this setting. There is no clear analog of reverse or inverse for
forests that preserves forest-Wilf-equivalence.

In this section, we determine that there are two forest-Wilf-equivalence classes for
patterns of length three, in contrast to the case of permutations where there is only one
Wilf-equivalence class. By direct computation, it has been determined that fn(321) =
fn(231) for n = 1, 2, 3, 4. However, f5(321) = 918, while f5(231) = 917. However, we
can construct a bijection between forests avoiding 312 and those avoiding 321. The
process is similar to that in the proof of Simion and Schmidt from [14].
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Consecutive Patterns in Inversion Sequences

Juan S. Auli Dartmouth College

This talk is based on joint work with Sergi Elizalde

A very common encoding of a permutation π is its inversion sequence Θ(π) = e =
e1e2 · · · en, with ei =

∣∣{j : j < i and πj > πi}
∣∣. The map Θ : Sn → In is one of several

bijections between the set permutations of [n], Sn, and the set of inversion sequences
of length n, In. This correspondence led Corteel, Martinez, Savage and Weselcouch [4]
and Mansour and Shattuck [7] to begin a systematic study of classical pattern avoid-
ance in inversion sequences.

The reduction of an inversion sequence e is defined to be the word obtained by re-
placing the ith smallest entry of e with i− 1. We say e contains the (classical) pattern
p = p1 p2 · · · pk ∈ {0, 1, . . . , k − 1}k if there exist a subsequence ei1 ei2 · · · eik of e with
reduction p. Otherwise, we say e avoids p.

Example 1. The inversion sequence e = 0021213 avoids the pattern 210, but it contains
the pattern 110. Indeed, e3e5e6 = 221 has reduction 110.

Note that unlike permutation patterns, an inversion sequence pattern may have re-
peated entries.

Corteel et al. [4] and Mansour and Shattuck [7] provide enumerative results for the
sets In(p), consisting of inversion sequences of length n avoiding the pattern p, for
patterns p of length 3. Their results connect classical patterns in inversion sequences
to many integer sequences, such as Fibonacci numbers, Bell numbers, Schröder num-
bers and Euler up/down numbers.

We consider consecutive patterns in inversion sequences in an analogous manner
to consecutive permutation patterns, see [6]. We say an inversion sequence e con-
tains the consecutive pattern p = p1 p2 · · · pk if there is a consecutive subsequence
eiei+1 · · · ei+k−1 of e with reduction p. Otherwise, we say e avoids p. We underline the
entries of p to distinguish it from the classical case.

Example 2. The inversion sequence e = 002031 contains the classical pattern 120
because e3e5e6 = 231 has reduction 120. However, e avoids the consecutive pattern
120.

We initiate a systematic study of consecutive patterns in inversion sequences in an
analogous manner to that of Corteel et al. [4] and Mansour and Shattuck [7]. Namely,
we give enumerative results for the set In(p) consiting of the inversion sequences
avoiding the consecutive pattern p, for p of length 3. Our results connect consecutive
patterns in inversion sequences to a number of well-known integer sequences, in-
cluding Catalan numbers, Fibonacci numbers, central polynomial numbers and little
Schröeder numbers.
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Additionally, we classify patterns of length 3 and 4 according to the following.

Definition 3. We say two consecutive patterns p and p′ are Wilf equivalent, which we
denote by p ∼ p′, if |In (p)| = |In (p′)| for all n.

On the other hand, p and p′ are strongly Wilf equivalent, denoted p s∼ p′, if for each
n and k, the number of inversion sequences in In containing k occurrences of p is the
same as for p′.

If the above condition holds for any set of prescribed positions for the k occurrences,
then we say p and p′ are super strongly Wilf equivalent and we denote this by p ss∼ p′.

These definitions are analogous to existing ones for consecutive permutation patterns,
see [5]. Henceforth, unless otherwise stated, whenever we say two patterns are equiv-
alent, we mean with respect to inversion sequences. Furthermore, we refer to an
equivalence of any one of the three types introduced as a generalized Wilf equiva-
lence.

Our results for consecutive patterns of length 3 are, for the most part, recurrences,
using the refinement In,k = {e ∈ In : en = k} of In, which allows us to define

In,k (p) = In,k ∩ In (p)

for a given pattern p. Note that In,k (p) = ∅ for k ≥ n and In (p) = ∪k≥0In,k (p) for
any p.

Example 4. For the consecutive pattern p = 001, we have |I3 (001)| = 4, as I3,0 (001)=
{000, 010}, I3,1 (001)={011} and I3,2 (001)={012}.

A summary of our results for consecutive patterns of length 3 is given in Table 1, for
patterns with no repeated letters, and in Table 2, for patterns with repeated letters.
In particular, we indicate which sequences match existing sequences in the On-Line
Encyclopedia of Integer Sequences (OEIS) [10].

Pattern p in the OEIS? Observations about |In(p)|
012 A049774 Counts |Sn (321)|
021 A071075 Counts |Sn (1324)|
102 New

∣∣In,k (p)
∣∣ = |In−1 (p)| −∑j≥1 j ·

∣∣∣In−2,j (p)
∣∣∣

120 A200404 Counts |Sn (1432)|
201 New

∣∣In,k (p)
∣∣ = |In−1 (p)| − k ∑j>k

∣∣∣In−2,j (p)
∣∣∣

210 New
∣∣In,k (p)

∣∣ = |In−1 (p)| −∑m>k ∑j>m ∑i≤j
∣∣In−3,i(p)

∣∣
Table 1: Consecutive patterns of length 3 with no repeated letters.

Here 1324 is a vincular or generalized permutation pattern, see [1].

Remark 5. Table 2 shows that 100 ss∼ 110. This is the only pair of consecutive patterns of
length 3 that are super strongly Wilf equivalent. In fact, no other consecutive patterns
of length 3 are even Wilf equivalent.
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Pattern p in the OEIS? Observations about |In(p)|
000 A052169 Counted by (n+1)!−dn+1

n , where dn is the number of
derangements of [n]

001 New
∣∣In,k (p)

∣∣ = |In−1 (p)| −∑j<k

∣∣∣In−2,j (p)
∣∣∣

010 New
∣∣In,k (p)

∣∣ = |In−1 (p)| − (n− 2− k)
∣∣In−2,k (p)

∣∣
011 New

∣∣In,k (p)
∣∣ = |In−1 (p)| −∑j<k

∣∣∣In−2,j (p)
∣∣∣ if k 6= n− 1,

and |In,n−1 (p)| = |In−1(p)|
100 ss∼ 110 New

∣∣In,k (p)
∣∣ = |In−1 (p)| −∑j>k

∣∣∣In−2,j (p)
∣∣∣

101 New
∣∣In,k (p)

∣∣ = |In−1 (p)| − k
∣∣In−2,k (p)

∣∣
Table 2: Consecutive patterns of length 3 with repeated letters.

The following theorem describes the generalized Wilf equivalence classes for consec-
utive patterns of length 4.

Theorem 6. A complete list of the generalized Wilf equivalences between consecutive patterns
of length 4 is as follows:

(i) 2013 ss∼ 2103

(ii) 3012 ss∼ 3102

(iii) 0100 ss∼ 0110

(iv) 1000 ss∼ 1110

(v) 1101 ss∼ 1001 ss∼ 1011

(vi) 0021 ss∼ 0121

(vii) 1002 ss∼ 1102 ss∼ 1012

(viii) 2001 ss∼ 2101 ss∼ 2011 ss∼ 2201

(ix) 1200 ss∼ 1210 ss∼ 1220

(x) 2100 ss∼ 2210

(xi) 0211 ss∼ 0221

(xii) 2012 ss∼ 2102

This fact, and Remark 5, led us to speculate the following.

Conjecture 7. Two consecutive inversion sequence patterns of length k are strongly Wilf
equivalent if and only if they are Wilf equivalent.

This conjecture is completely analogous to one by Nakamura [9, Conjecture 5.6] for
consecutive permutation patterns, which remains open.

A stronger version of Conjecture 7 may hold, as it is possible that all three types
of generalized Wilf equivalence classes coincide for all k. We show this is true for
consecutive patterns of length k ≤ 4.

Continuing the systematic study started by Corteel et al. [4], Martinez and Savage [8]
reframe the notion of a length-3 pattern to consider a triple of binary relations, as
opposed to a word of length 3. Given a fixed triple of binary relations (R1, R2, R3),
where Ri ∈ {≤,≥,<,>,=, 6=,−}, they study the set In (R1, R2, R3) consisting of those
e ∈ In with no subindices i < j < k such that eiR1ej, ejR2ek and eiR3ek. The relation
“−” on a set S means all of S× S. That is, x− y for all x, y ∈ S

Example 8. In (≥,≤,≤) is the set of inversion sequences e ∈ In with no i < j < k such
that ei ≥ ej, ej ≤ ek and ei ≤ ek. That is, the set of inversion sequences in In avoiding
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all the words in the set {000, 001, 101, 102}. Then In (≥,≤,−) would denote the set of
inversion sequences avoiding all the words in the set {000, 001, 100, 101, 102, 201}.

We study the consecutive analogues of the sets In (R1, R2,−). Namely, the sets In (R1, R2)c,
with Ri ∈ {≤,≥,<,>,=, 6=}, consisting of inversion sequences e ∈ In in which the
relations R1 and R2 do not occur consecutively. That is, there is no subindex i such
that eiR1ei+1 and ei+1R2ei+2.

Example 9. An inversion sequence e avoids the consecutive pattern (≥,=)c if there is
no subindex i such that ei ≥ ei+1 = ei+2. Thus, In (≥,=)c = In (000) ∩ In (100).

As in the case of consecutive patterns understood as words, we define a notion of
generalized Wilf equivalence for tuples of consecutive relations.

Definition 10. Two patterns (R1, R2)c and (R′1, R′2)c of tuples of consecutive relations
are Wilf equivalent, denoted by (R1, R2)c ∼ (R′1, R′2)c, if |In (R1, R2)c| =

∣∣In (R′1, R′2)c

∣∣
for all n.

We say (R1, R2)c and (R′1, R′2)c are strongly Wilf equivalent, denoted by (R1, R2)c
s∼

(R′1, R′2)c, if for each n and k, the number of inversion sequences in In containing k
occurrences of (R1, R2)c is the same as for (R′1, R′2)c.

If the above condition holds for any set of prescribed positions for the k occurrences,
then we say (R1, R2)c and (R′1, R′2)c are super strongly Wilf equivalent and we denote
this by (R1, R2)c

ss∼ (R′1, R′2)c.

We refer to an equivalence of any one of these three types as a generalized Wilf
equivalence.

There are 36 patterns (R1, R2)c of tuples of consecutive relations. A classification of
these patterns into generalized Wilf equivalence classes is provided by the next result.

Theorem 11. A complete list of the generalized Wilf equivalences between consecutive pat-
terns of inequalities of length 3 is as follows:

(i) (≥,≥)c
ss∼ (<,<)c

(ii) (≥,<)c
ss∼ (<,≥)c ∼ ( 6=,≥)c

(iii) (≥,>)c
ss∼ (>,≥)c

(iv) (≥,=)c
ss∼ (=,≥)c

(v) (>,=)c
ss∼ (=,>)c

Although the patterns (<,≥)c and ( 6=,≥)c are Wilf equivalent, they are not strongly
Wilf equivalent. This shows that strong and Wilf equivalence classes do not coin-
cide. Hence, an analogous result to Conjecture 7 for patterns of tuples of consecutive
relations is false.

As a consequence of Theorem 11 (iii), we deduce the following.

Corollary 12. The permutation patterns 1243 and 4213 are Wilf equivalent.
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This result was originally conjectured by Baxter and Pudwell [2, Conjecture 17] and
then proved by Baxter and Shattuck [3, Corollary 11]. We present a simpler and more
direct proof of this fact.

In addition to classifying patterns of tuples of consecutive relations into generalized
Wilf equivalence classes, we prove that for many patterns (R1, R2)c the sequence
|I (R1, R2)c| has an alternative combinatorial interpretation. In fact, in several cases
they coincide with the avoidance sequence of a permutation pattern. These results
are summarized in Table 3.

Pattern p |In(p)| in the OEIS as OEIS description
(≤,≥)c A000027 n
(≤,>)c A000108 Cn: Catalan numbers
(≤, 6=)c A040000 1, 2, 2, . . . (constant 2 for n > 1)
(≥,≤)c A000045 Fn+2: (n + 2)th Fibonacci num-

ber
(≥,≥)c

ss∼ (<,<)c A049774 |Sn (321)|
(≥,<)c

ss∼ (<,≥)c
s∼ ( 6=,≥)c A000079 2n−1

(≥,>)c
ss∼ (>,≥)c A200403 |Sn (1243)|

(≥, 6=)c A000124 Central polygonal numbers
(lazy caterer’s sequence)

(>,≤)c A071356 Motzkin paths of length n with
up and level steps coming in
two colors

(=,=)c A052169 (n+1)!−dn+1
n

( 6=,≤)c A000071 Fn+2 − 1, where Fn+2 is the
(n + 2)th Fibonacci number

( 6=,=)c A000522 Number of 01−avoiding rook
monoids

( 6=, 6=)c A000085 Number of involutions of [n]

Table 3: Patterns p of tuples of consecutive relations for which |In(p)| has an alterna-
tive combinatorial interpretation.

We show that In (>,≤)c = In (>,≤,−) for all n. As a consequence, we obtain the
following result, which was conjectured by Martinez and Savage [8, Section 2.19].

Corollary 13. The sequence |In (>,≤,−)| has ordinary generating function

1− 2x−
√

1− 4x− 4x2

4x2 .
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Combinatorial Exploration of Permutation Classes

Christian Bean Reykjavik University

This talk is based on joint work with Michael Albert, Anders Claesson, Tomas Ken Magnusson, Jay
Pantone, and Henning Úlfarsson

In recent years there has been increasing interest in automated provers and proof
checkers for mathematical statements. Most of the tools developed have been general
purpose and therefore unable to leverage domain-specific knowledge. The purpose of
this work is to develop an algorithm for proving theorems in the area of enumerative
combinatorics, in particular, permutation patterns.

The design of our tool is such that it can be easily adapted to other areas of math-
ematics by including suitable domain-specific knowledge. This approach would be
particularly viable for problems of determining or verifying regularity in collections
of discrete structures.

The CombSpecSearcher algorithm

The goal of enumerative combinatorics is to enumerate a given combinatorial object.
One method is to find a combinatorial specification as defined in [6]. We will review
some of these definitions briefly. A combinatorial class is a set, C, with a size function
C 7→ N0 such that the preimage for all integers is finite. Any element c ∈ C is called
a combinatorial object and the size of c is denoted |c|. For a combinatorial class, we let
Cn be the set of objects in C of size n. The goal is to determine the sequence (|Cn|)n≥0.

A (combinatorial) rule is a tuple (C, {C1, C2, . . . , Ck}, ◦), where C and the Ci are com-
binatorial classes and ◦ is an admissable constructor, if C ∼= C1 ◦ C2 ◦ · · · ◦ Ck, that is,
there is a length preserving bijection between the C and C1 ◦ C2 ◦ · · · ◦ Ck. The ad-
missable constructors we have here are disjoint union and Cartesian product. If the
enumeration of a combinatorial class is known then the combinatorial rule (C, ∅, ◦) is
allowed.

A combinatorial specification for a tuple Č = (C1, C2, . . . , Ck) of non-empty combinatorial
classes is a set of k rules using only combinatorial classes in Č and each Ci appears on
the left of a rule once. We say it is a combinatorial specification for C1 also.

There are two main stages to combinatorial exploration. The first is the expansion stage,
that is to apply strategies to the combinatorial classes of interest, and create a set of
rules which explain how combinatorial classes are related. The second stage is to
check if there exists a structural description for the original combinatorial class of
interest within this set of rules. This procedure has been automated, and we call our
algorithm CombSpecSearcher.
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The TileScope algorithm

We now focus our attention on enumerating the number of length n permutations in
a permutation class. There have been some systematic approaches towards getting
this enumeration, by which we mean a polynomial time algorithm in n to compute
|Avn (Π)| as in [11]. The four widely applicable techniques meeting this criteria are
generating trees [10], enumeration schemes [7, 12], substitution decomposition [1, 4]
and the insertion encoding [3, 9]. An overview of these four algorithms can be found
here [7].

The work here builds upon the structures found by the Struct algorithm [5], which
conjectured structural descriptions of permutation classes using something similar to
generalized grid classes as were first defined by [8]. We use a refinement of this that
we call gridded permutations and tilings.

We are going to build on the general framework provided by the CombSpecSearcher
algorithm, and describe strategies which can be used to find combinatorial specifica-
tions for permutation classes. We will describe multiple strategies, and in essence,
describe multiple different algorithms, but collectively we will call these the TileScope
algorithm. For example, we can translate the methods of other existing automatic
methods into strategies for TileScope.

Theorem 1. The methods used by the regular insertion encoding and the original enumeration
schemes as in [12] can be translated into strategies using gridded permutations and tilings.

Our implementations of these algorithms are superior as the original algorithms rely
on results that require the generation of permutations which is expensive. Our algo-
rithm does not generate permutations.

Successes

As training ground we have been testing the TileScope algorithm on bases consisting
of length 4 patterns. Given that it can be seen from the basis whether or not a permu-
tation class is regular insertion encodable [3], and in light of Theorem 1, we consider
those which are not. There exists a combinatorial specification using the TileScope
for all bases with 8 or more patterns, using the strategies discussed in a later section:
requirement insertion, point placement, factors, and row and column separation. In Table 1
we show the statistics for bases which TileScope has found a combinatorial specifi-
cation. There are 130 bases left in this set and we have methods and ideas which
can enumerate some beyond what we will discuss in this abstract. In some cases the
combinatorial specification the algorithm finds for a class Av (Π) extends to any class
Av (Π∪T), where T is a finite set of patterns.

In Figure 1, there is an example of how to translate the classic proof for 231-avoiders
into the language of gridded permutations and tilings. It uses the four strategies that
were used to find the successes in Table 1. The details of what this represents are
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Number of length 4
patterns

Not regular insertion
encodable

Enumerated Structural
description by TileScope

8 337 337
7 547 545
6 659 647
5 578 548
4 363 320
3 153 103
2 43 14
1 7 0

Table 1: The successes for bases consisting of length 4 patterns.

Figure 1: A pictorial representation for the combinatorial specification of Av (231).

discussed in the following sections. Roughly speaking, the red permutations you see
are those which must be avoided. The green permutations are those which must be
contained and the black point represents a point in the permutation, in this case, the
value n in the permutation.
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Gridded permutations

In this section, we will describe the combinatorial classes that we use for searching
for combinatorial specifications.

We tend to think of permutations with a geometric mindset. In order to do this,
we borrow some definitions from Section 2 of [2] altering them slightly to suit our
thinking. The gridded position of a point (x, y) in R2 is defined as the integer point
(a, b) such that (x, y) ∈ [a, a + 1)× [b, b + 1).

We say that a figure F ⊆ R2 is gridded involved in the figure G, denoted F �G if there
are subsets A, B ⊆ R and increasing injections φx : A 7→ R and φy : B 7→ R such that

F ⊆ A× B and φ(F ) = {(φx(a), φy(b)) : (a, b) ∈ F} ⊆ G

and φ preserves the gridded position of a point (x, y) in R2. If you ignore the gridded
position you recover the definition of involvement as in [2].

As in [2] this relation forms a preorder on the collection of all figures. If F �G and
G �F we say they are gridded equivalent. (This means two figures are equivalent if
and only if one can be transformed to the other by stretching and shrinking the axes
without ever crossing the integer lattice).

We say a figure is independent if no two points lie on the same horizontal or vertical
line. The set of all gridded permutations, G, is then defined as the set of all equivalence
classes of finite independent figures with respect to gridded equivalence. We define
containment of gridded permutations with respect to the involvement relation, and
we refer to σ as a gridded pattern when σ�π for some gridded permutation π. De-
fine the length of a gridded permutation as the number of points. The standardization
of the set of sorted points is called the underlying permutation.

For convenience to represent an equivalence class we write the underlying permuta-
tion where we put the gridded position of each point in its exponent, for example the
figure

{( 1
2 , 1

2

)
,
( 3

2 , 3
2

)}
is in the equivalence class 1(0,0)2(1,1). A larger example is given

in Figure 2.

x

y

Figure 2: A drawing of a figure that is in the equivalence class represented by
2(0,0)8(0,3)4(1,1)3(1,1)7(2,3)6(2,2)9(3,4)1(3,0)5(4,2).

The set of gridded permutations G is not a combinatorial class, as there are not
finitely many gridded permutations of each length. In order to correct this we de-
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fine G(n,m) to be the set of gridded permutations with gridded positions in {0, . . . , n−
1} × {0, . . . , m− 1}. This is a combinatorial class.

A gridded permutation avoids a set of gridded patterns O if it avoids every gridded
permutation in O. Let

Av(n,m)(O) = {π ∈ G(n,m)|π avoids O}

be the avoiders of O, and the Av(n,m)
k (O) be the length k gridded permutations in this

set. We say a gridded permutation contains a set of gridded patterns R if it does not
avoid R. That is it contains at least one gridded permutations in R. The containers of
R is the set

Co(n,m)(R) = {π ∈ G(n,m)|π contains R}

and Co(n,m)
k (R) is the set of length k gridded permutations in this set.

We define a tiling to be the triple T = ((n, m),O,R = {R1,R2, . . . ,Rk}), where O
is a set of gridded permutations called obstructions and R is a set of sets of gridded
permutations that it must contain called requirements, i.e.

T = Grid (T ) = Av(n,m)(O) ∩Co(n,m)(R1) ∩Co(n,m)(R2) ∩ · · · ∩Co(n,m)(Rk).

For sake of brevity we will say T = Grid (T ), and refer to gridded permutations
being on a tiling. Denote Tn to be the length n gridded permutations on T .

Proposition 2. Let R1 and R2 be two finite sets of gridded patterns. Then there exists a
finite set R such that

Co(n,m)(R) = Co(n,m)(R1) ∩Co(n,m)(R2).

This result shows that containment of any number of sets of gridded permutations
can be reduced to a single set, however it is often more convenient to think about
requiring many smaller requirements.

We say a gridded permutation is local if the gridded positions of all the points are
the same. We write πc to represent the local gridded permutation with underlying
pattern π with gridded positions being c.

Proposition 3. Let C = Av (Π) be a permutation class. Then the tiling

T =
(
(1, 1), {σ(0,0)|σ ∈ Π}, ∅

)
is in bijection with C.

Proof. The mapping φ : C 7→ T given by φ(π) = π(0,0) is a bijection.

The goal is to use the methods of the CombSpecSearcher to find combinatorial specifi-
cations for tilings. We will translate our geometric proof ideas for permutation classes
into the language of gridded permutations and by using this proposition we will be
able to enumerate permutation classes.
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Translating proof techniques

We will illustrate how to translate standard methods to gridded permutations and
tilings with a classic example from permutation patterns: how many permutations of
length n avoid 231? The classic proof is as follows:

Proof. A permutation is either empty or not. A non-empty permutation π ∈ Avn (231)
must have some maximum element, so we can write it as π = αnβ. Given that π

avoids 231, all the points in α must be below all the points in β. Moreover, if π avoids
231 then both α and β must avoid 231. This describes the structure of the permutations
in Avn (231). It can also be used to get the enumerative information from the class,
that is |Avn (231)| is given by nth Catalan number.

We will now translate the proof methods from above to tilings and gridded permuta-
tions. From Proposition 3 we know that if we let O = {231(0,0)} and R = ∅ that the
tiling T = ((1, 1),O,R) has a length preserving bijection to Av (231).

The first strategy we used was: either a permutation is empty or not. This idea
can be captured by saying that a gridded permutation in T is either on the tiling T1
where 1(0,0) is added to O or it is on the tiling T2 where the requirement {1(0,0)} is
added to R. Notice that T1 consists only of the empty gridded permutation. This
can be generalized to allow adding longer requirements, and collectively we call this
strategy requirement insertion. Cleary, it is a combinatorial rule with the admissable
constructor disjoint union.

The second strategy was to write a non-empty permutation π as αnβ. We represent
this by creating a tiling, T3 with dimensions (2, 3) which we can have a length preserv-
ing bijection to. To capture the correct strategy we add the requirement {1(1,1)} and to
the obstructins we add 1(0,1), 1(1,0) and 1(2,1) which force these cells to be empty. We
also add the obstructions 12(1,1) and 21(1,1), which ensures cell (1, 1) contains exactly
a point, so representing n. We then add the obstructions that can occur across the two
remaining opening cells that represent α and β, to ensure that the tiling avoids 231.
This strategy we call point placement and is a combinatorial rule, but more, it shows
equivalence between T2 and T3.

In T3 we can ignore some redundant obstructions, since all of the crossing obstructions
contain the smaller gridded permutation 2(0,0)1(2,0). This length 2 obstruction tells you
that all of the points in cell (0, 0) in the gridded permutations on T3 appear below all
of the points in cell (2, 0). We can represent this by creating another tiling, T4, that
is 3× 3 and essentially puts these two cells on their own row. We call this inferral
strategy row separation. This is an equivalence between T3 and T4.

The final strategy we use is to observe that since T4 has no crossing obstructions and
all the non-empty cells are on separate rows and columns, the gridded permutations
can be made by picking the points in each cell independently. Therefore, we can
think of it as the Cartesian product of the 3 non-empty cells as 1 × 1 tilings. We
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call this strategy factors, and clearly, this is a combinatorial rule with the admissable
constructor Cartesian product.

We have shown a pictorial representation of this combinatorial specification using
these strategies in Figure 1. The obstructions are shown in red, and the requirements
in green. The cell that is a point is represented by a black point.
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The Local Structure of Permutations with Given

Inversion Density

David Bevan University of Strathclyde

This talk is based on joint work with Thomas Selig

At the left is a typical permutation on 750 points with 2809 inversions. The probability
that two points chosen randomly from this permutation form an inversion is very
close to 1%.

Question. What is the probability that two adjacent points form an inversion (a descent)
in a random n-point permutation with b(n

2)/100c inversions, as n→ ∞?

A permuton, like that at the right, precisely describes the distribution of points in a
random permutation with fixed inversion density (see [1]). Can this help answer the
question?

We will investigate the extent to which permutons can (and cannot) be used to answer
this question, and look at what more can be said about the local structure of a large
random permutation with specified inversion density. We may also consider what
happens if the number of inversions grows more slowly than any fixed proportion of
the maximum possible.

References

[1] R. Kenyon, D. Král’, C. Radin, and P. M. Winkler. Permutations with fixed pattern
densities. arXiv:1506.02340 [math.CO].

40



Patterns in Standard Young Tableaux

Sara Billey University of Washington

This talk is based on joint work with Matjaž Konvalinka and Joshua Swanson

Standard Young tableaux are fundamental in combinatorics, representation theory,
and geometry. The major index statistic originally defined for permutations has been
extended to tableaux and can be interpreted in each of these settings. We consider
the probability distribution of the major index on standard tableaux of fixed partition
shape chosen uniformly along with the corresponding generating function.

We give an explicit hook length formula for all of the cumulants of these distributions
using recent work of Chen–Wang–Wang. The cumulant formula allows us to classify
all possible limit laws for any sequence of shapes in terms of a simple auxiliary statis-
tic, aft, generalizing earlier results of Canfield–Janson–Zeilberger, Chen–Wang–Wang,
and others. We show that any such sequence of distributions with aft approaching
infinity is asymptotically normal.

This leads to a series of questions concerning locations of zero coefficients, unimodal-
ity, and asymptotic estimates for the major index generating functions over all stan-
dard tableaux of a fixed shape. We settle the first of these by identifying mutation
rules in terms of tableaux patterns leading to both a strong and weak poset structure
on tableaux ranked by the major index. The classification of zeros can be interpreted
as determining which irreducible representations of the symmetric group exist in each
homogeneous components of the corresponding coinvariant algebra. We give conjec-
tured answers concerning unimodality and asymptotic estimates.
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Rook and Wilf Equivalence of Integer Partitions

Jonathan Bloom Lafayette College

This talk is based on joint work with Nathan McNew and Dan Saracino

In this talk we introduce a notion of pattern avoiding integer partitions and discuss
how this idea is intimately connected to the well studied area of Rook Theory. In
particular, our main result is that Wilf-equivalence (under integer partition avoidance)
is the same as Foata and Schützenberger’s notion of rook equivalence. Lastly, and if
time permits, we will look at a family of integer partition patterns that yield rational
generating functions and discuss some corollaries of this result. To formally state and
describe these results some definitions are needed.

Let P be the set of all integer partitions and refine this for any n ≥ 0 by letting Pn
be the set of all integer partitions µ whose weight (i.e., the sum of the parts) is n. We
denote the weight of a partition µ by |µ|. For any partition µ we define its height to
be the number of positive parts hµ. Likewise, we define its width, which we denote by
wµ, to be the size of its first part µ1. Using these notions we also refine our set P by
defining, for any h, k ≥ 0, the set

P(h, k) = {µ ∈ P : hµ ≤ h, wµ = k}.

Our notion of pattern avoidance becomes natural when we view integer partitions as
Ferrers boards. In particular, we say a partition α contains a partition µ provided that
it is possible to delete rows and columns from α so that one obtains µ. For example,
the partition

(5, 5, 2, 2, 2) =

contains (2, 1) = , since deleting the colored rows and columns yields (2, 1). For

another example, if µ = (4, 3, 3, 2, 2) then by deleting the indicated rows and columns
we see that µ is contained in the partition

.

We define P(µ) to be the set of all partitions that contain µ and we define Pn(µ) =
P(µ) ∩ Pn. We say that µ, τ ∈ P are Wilf equivalent provided that

|Pn(µ)| = |Pn(τ)|
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for all n ≥ 0. Similarly, we say that µ and τ are width-Wilf equivalent provided that
there are the same number of partitions of each weight and width that contain µ as
there are that contain τ.

Further we define for any k ≥ 0

P(µ, k) = {α ∈ P(µ), : wα = k + wµ}

and Pn(µ, k) = Pn ∩ P(µ, k) and set

Fµ,k(q) = ∑
n≥0
|Pn(µ, k)|qn.

Lastly, we also need to recall some basic rook theory. We say two integer partitions
(when viewed as Ferrers boards) are rook equivalent provided that they admit the same
number of k-rook placements for all k ≥ 0. In [3], Foata and Schützenberger give a
beautiful “multiset" criterion for rook equivalence. They prove that µ and ν are rook
equivalent if and only if the multisets

{i + µi, : i ≤ h} = {i + νi, : i ≤ h}

are equal. (In this case we add empty rows to one of them if necessary, so that they
have the same number of rows.)

Our main contribution is a new (and unexpected) characterization of the old idea of
rook equivalence. In particular, we establish the following theorem.

Theorem 1 (Bloom, Saracino). Partitions µ and τ are rook equivalent if and only if they are
Wilf equivalent.

The proof of the forward direction can be found in the first paper on this topic, see [2].
Although this proof is long and technical the main idea is to show that the generating
function Fµ,k(q) can be described in terms of the multiset {i + µi, : i ≤ h}. On the
other hand, the converse is the main result of the second paper on this topics, see [1].
To prove this direction, we show that for two distinct decreasing partitions of n, µ and
ν we have

|Pn+m−1(µ)| < |Pn+m−1(ν)|

where m = r + νr and r is the largest integer such that µr 6= νr. We note that showing
this for decreasing partitions is sufficient as the set of such partitions is a transversal
on the set of rook equivalence classes.

Additionally, in [2], we also characterize the notion of width-Wilf equivalence.

Theorem 2 (Bloom, Saracino). For any nonempty partitions µ and τ that have the same
weight and width, the following are equivalent:

(i) µ and τ are width-Wilf equivalent

(ii) Fµ,1 = Fτ,1
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(iii) µ and τ are rook equivalent.

Most recently, Bloom and McNew have looked at characterizing the generating func-
tions

Gµ(z) = ∑
n≥0
|Pn \ Pn(µ)|zn,

i.e., the generating function for pattern avoiding partitions. (Recall that Pn(µ) is the
set of partitions with weight n that contain µ.)

Theorem 3 (Bloom, McNew). Let µ be a partitions whose parts differ in length by at least
2. Then Gµ(z) is rational.

We prove this theorem by developing an algorithm that recursively computes these
generating functions for such µ. As a corollary of this theorem we are able to prove
two curious facts.

Corollary 4 (Bloom, McNew). Fix some M ≥ 1 and let Qn(M) be the set of all µ ∈ Pn so
that |µi − µj| < M for all i, j ≤ hµ. Then ∑n≥0 |Qn(M)|zn is rational.

Via numerical evidence and the OEIS sequence A136185 we speculated that the gen-
erating function for µ = (5, 2)

1 + 2z + 5z2 + 7z3 + 11z4 + 14z5 + 20z6 + · · ·

was equal to the generating function for the number of metacyclic groups of prime or-
der as found in [4]. Using our algorithm to construct this rational generating function
we found it to be

G(5,2)(z) =
−z(z7 − 2z5 + z3 + z2 − z− 1)
(z− 1)4(z + 1)2(z2 + z + 1)

,

which is precisely the same one found for metacyclic groups of prime order. This
gives us the following result.

Corollary 5 (Bloom, McNew). The partitions that avoid (5, 2) are in bijection with meta-
cyclic groups of prime order.
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Local Convergence for Random Permutations and the Case of

Uniform ρ-Avoiding Permutations with |ρ| = 3

Jacopo Borga Universität Zürich

For large combinatorial structures, two main notions of convergence can be usually
defined: scaling limits and local limits. Informally scaling limits consist in studying
the objects from a global point of view (after a rescaling of the distances between
points of the objects), while for local limits we study the objects in a neighborhood
around a marked point (without rescaling distances). In particular for graphs, both
notions are well-studied and well-understood. For permutations only a notion of
scaling limits, called permutons, has been recently introduced (see [5]). The conver-
gence in the sense of permutons has also been characterized by frequencies of pattern
occurrences (see [2]).

Our main results can be divided into two different parts:

1. We set up a new notion of local convergence for permutations and we prove
a characterization in terms of proportions of consecutive pattern occurrences.
We are also able to characterize random limiting objects introducing a "shift-
invariant" property.

2. We show examples of local convergence in the framework of random pattern-
avoiding permutations: we describe the asymptotics in n of the number of con-
secutive occurrences of any fixed pattern π in a uniform ρ-avoiding permutation
of size n, for |ρ| = 3. For this last result we use bijections between ρ-avoiding
permutations and ordered rooted trees and singularity analysis.

Local convergence for permutations

This section is inspired by local convergence for trees (see e.g. [1]) and Benjamini-
Schramm convergence for random graphs (see [3]). In the context of local convergence
we need to look at permutations with a marked entry, called root. We denote with Sn

the set of permutations of size n and with S the set of permutations of finite size.

Definition 1. A finite rooted permutation is a pair (σ, i), where σ ∈ Sn and i ∈ [n].

To a rooted permutation (σ, i), we associate (as shown in the left hand-side of Fig. 1)
the pair (Aσ,i,�σ,i), where Aσ,i := [−i + 1, |σ| − i] is a finite interval of integers con-
taining 0 and �σ,i is a total order on Aσ,i, defined for all `, j ∈ Aσ,i by ` �σ,i j if
σ`+i ≤ σj+i.

Given the diagram of a rooted permutation (σ, i), the corresponding total order (Aσ,i,�σ,i
) is simply obtained by shifting the origin of the x-axis to the column containing the
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root of the permutation (the new indices are reported under the columns of the dia-
gram) and then reading the diagram of the permutation from bottom to top, gradually
recording, for each element, its position according to the new x-axis.

σ = 4 2 5 8 3 6 1 7
i = 5

2 ≤σ,i −3 ≤σ,i 0 ≤σ,i −4 ≤σ,i −2 ≤σ,i 1 ≤σ,i 3 ≤σ,i −1

r2

2 ≤σ,i 0 ≤σ,i −2 ≤σ,i 1 ≤σ,i −1

-4 -3 -2 -1 0 1 2 3

r2(σ, i) = 3 5 3 4 1

Figure 1: Restriction function for rooted permutations.

Since the map from the space of finite rooted permutations to the space of total or-
ders on finite integer intervals containing zero is a bijection, we identify every rooted
permutation (σ, i) with the total order (Aσ,i,�σ,i).

Thanks to this identification, the following definition of infinite rooted permutation is
natural.

Definition 2. We call infinite rooted permutation a pair (A,�) where A is an infinite
interval of integers containing 0 and � is a total order on A.

The next step is to define a notion of local convergence in the space of rooted (finite
or infinite) permutations denoted by S̃•. In order to do that we introduce a notion of
neighborhoods around the root which can be thought as a "vertical strip" around the
root of the permutation (see Fig. 1). Formally, for all h ∈ N, we define the restriction
function around the root as

rh : S̃• −→ S̃•
(A, �) 7→

(
A ∩ [−h, h],�

)
.

The restriction rh of the diagram around the root coincide with the diagram of the
rooted permutation induced by the pattern pat[a,b](σ) where a = max{i − h, 1} and
b = min{i + h, |σ|}.

Example 3. We refer to Fig. 1. On the top of the picture we see the restriction r2(σ, i)
from the diagram point of view and on the bottom from the total order point of view.

Definition 4. We say that a sequence (An,�n)n∈N of rooted permutations in S̃• is
locally convergent to an element (A,�) ∈ S̃•, if for all h > 0 there exists N ∈ N such
that for all n ≥ N,

rh(An,�n) = rh(A,�).
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This topology is metrizable by a local distance d and we prove that the space (S̃•, d)
is a compact Polish space.

We have defined a notion of local convergence for rooted permutations and we want
to extend this notion to study sequences of (unrooted) permutations. We can see a
fixed permutation σ as a rooted object only after a root i has been chosen. A natural
way to choose a root is to make the choice at random, and uniformly among the
indices of σ. In this way, a fixed permutation σ naturally identifies a random variable
(σ, i) that takes values in the set of finite rooted permutations (we denote random
quantities using bold characters).

Definition 5. Given a sequence (σn)n∈N of elements in S , we say that (σn)n∈N Benjamini-
Schramm converges to a random (possibly infinite) rooted permutation (A,�), if the
sequence (σn, in)n∈N, where in is a uniform index in [1, |σn|], converges in distribution
to (A,�) with respect to the local distance d.

We prove the following characterization in terms of proportions of consecutive pattern
occurrences. For any pattern π of size k, and any permutation σ of size n, we denote
by

c̃-occ(π, σ) =
number of consecutive occurrences of π in σ

n
,

the proportion of consecutive occurrences of π in σ.

Theorem 6. For any n ∈N, let σn be a permutation of size n. Then the Benjamini-Schramm
convergence for the sequence (σn)n∈N is equivalent to the existence of an infinite vector of
non-negative real numbers (∆π)π∈S such that, for all patterns π ∈ S ,

c̃-occ(π, σn)→ ∆π.

We then extend, in two non-equivalent ways, the above notion of Benjamini-Schramm
convergence to sequences of random permutations (σn)n∈N introducing the annealed
and the quenched version of the Benjamini-Schramm convergence. We obtain the fol-
lowing two characterizations:

Theorem 7. For any n ∈N, let σn be a random permutation of size n. Then

(a) The annealed version of the Benjamini-Schramm convergence of (σn)n∈N is equivalent
to the existence of an infinite vector of non-negative real numbers (∆π)π∈S such that
for all patterns π ∈ S ,

E[c̃-occ(π, σn)]→ ∆π.

(b) The quenched version of the Benjamini-Schramm convergence of (σn)n∈N is equivalent
to the existence of an infinite vector of non-negative real random variables (Λπ)π∈S
such that (

c̃-occ(π, σn)
)

π∈S
(d)→ (Λπ)π∈S ,

w.r.t. the product topology (where
(d)→ indicates the convergence in distribution).
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Obviously, the quenched version implies the annealed version.

Finally we are also able to characterize random limiting objects for the annealed ver-
sion of the Benjamini-Schramm convergence introducing a "shift-invariant" property
(corresponding to the well-known notion of unimodularity for random graphs).

Local convergence for uniform ρ-avoiding permutations with |ρ| = 3

We show the relevance of this new notion of convergence proving the local conver-
gence for random ρ-avoiding permutations and characterizing their limits.

Theorem 8. Let ρ ∈ S3 and for any n ∈ N, let σn be a uniform random ρ-avoiding
permutation. Then we have the following convergence in probability,

c̃-occ(π, σn)
P→ Pρ(π), for all π ∈ Av(ρ), (1)

where for all m ∈N,
(

Pρ(π)
)

π∈Avm(ρ)
is a probability distribution on Avm(ρ) given below.

An interesting aspect of the theorem is the condensation phenomenon, indeed the
limits of the random sequences

(
c̃-occ(π, σn)

)
n∈N

are deterministic, for all pattern
π ∈ S . This also implies that the convergence in probability in Equation (1) is equiv-
alent to the convergence in distribution of the vector

(
c̃-occ(π, σn)

)
π∈S . Therefore

our theorem trivially implies the characterization (b) in Theorem 7 and so prove that
the sequence (σn)n∈N converge for the quenched version of the Benjamini-Schramm
convergence. Moreover, we are able to provide a construction of the limiting random
order on Z.

We now present the main ideas of the proof of Theorem 8. First of all we note that
it is enough to analyze the two cases ρ = 321 and ρ = 231. The other four cases are
obtained using symmetries of the square.

We explicitly exhibit the probability distributions(
P231(π)

)
π∈Avm(231)

and (
P321(π)

)
π∈Avm(321)

that appear in the statement of the theorem. For all m ≥ 0,

P231(π) :=
2LRMax(π)+RLMax(π)

22|π| , for all π ∈ Av(231),

where LRMax(π) (resp. RLMax(π)) denotes the number of left-to-right maxima (resp.
right-to-left maxima) in π. Moreover, for all m ≥ 0 and for all π ∈ Avm(231),

P321(π) :=


|π|+1

2|π|
if π = 12...|π|,

1
2|π|

if c-occ(21, π−1) = 1,

0 otherwise.
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We underline that the two limiting distributions present an important difference: the
first one has full support on Avm(231), whereas the second gives positive measure
only to 321-avoiding permutations whose inverse have at most one descent.

We give some hints into the proof in the case ρ = 231. The proof is divided into two
main steps:

FIRST STEP: The goal is to prove that E[c̃-occ(π, σn)]→ P321(π), for all π ∈ Av(231).

We use a technique introduced by Janson [6]. Using a well-known bijection between
231- avoiding permutations and binary trees (see [4]), instead of considering a se-
quence of uniform 231-avoiding permutations of size n, we can consider a sequence
of uniform binary trees Tn with n vertices. The behavior of Tn can be understood con-
sidering a binary Galton-Watson tree Tδ with offspring distribution η(δ), δ ∈ (0, 1).
Indeed, for some specific distribution η(δ), the law of a binary Galton-Watson tree
Tδ conditioned on having n vertices is equal to the law of Tn. Using this result it is
possible to relate Tδ and the sequence (Tn)n∈N by the formula

E
[
F(Tδ)

]
=

1 + δ

1− δ

+∞

∑
n=1

E
[
F(Tn)

]
· Cn ·

(1− δ2

4

)n
, for all bounded functions F. (2)

With a recursive proof we show that

E
[
c-occ(π, Tδ)

]
= δ−1 · P231(π) + P(δ),

where P(δ) is a polynomial in δ. Then applying singularity analysis to the function
in Equation (2) (which is ∆-analytic in z(δ) = 1−δ2

4 ) we conclude that

E
[
c̃-occ(π, Tδ)

]
→ P231(π), for all π ∈ Av(231).

We finally conclude the proof going back to 231-avoiding permutations, working back-
wards the above mentioned bijection with trees"

SECOND STEP: The goal is to prove c̃-occ(π, σn)
P→ P231(π), for all π ∈ Av(231).

We study the second moment E[c̃-occ(π, σn)2] using similar techniques as before and
we obtain

E
[
c-occ(π, Tδ)

2]→ P231(π)2, for all π ∈ Av(231).

We conclude noting that

Var
(
c-occ(π, Tδ)

2)→ 0, for all π ∈ Av(231),

and applying the second moment method.

The proof in the case ρ = 321 is not presented in this abstract and uses different
techniques.
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The Undecidability of the Joint Embedding Property for

Finitely-Constrained Hereditary Graph Classes

Samuel Braunfeld Rutgers University

We prove that there is no algorithm that, given a finite set of forbidden induced
subgraphs, decides whether the corresponding hereditary graph class has the joint
embedding property. This may be a step toward proving there is no algorithm that,
given a finite set of forbidden permutation patterns, decides whether the correspond-
ing pattern avoidance class is atomic.

A pattern avoidance class is called atomic if it cannot be written as a union of two
proper subclasses. Pattern avoidance classes can sometimes be understood by under-
standing their atomic subclasses, as in the following result.

Proposition 1 ([3]). Let C be a pattern avoidance class without an infinite antichain in the
containment order. Then C can be written as a finite union of atomic subclasses, and the upper
growth rate of C is equal to the greatest upper growth rate of its atomic subclasses.

In his work on homogeneous permutations [1], Cameron introduced the structural
view of permutations as structures in a language of two linear orders. A permutation
π is contained in σ exactly when, from this structural viewpoint, π embeds into σ.
Atomicity is then seen to be equivalent to the following standard model-theoretic
property.

Definition 2. A class of structures C has the joint embedding property (JEP) if for all
A, B ∈ C, there exists a C ∈ C embedding both.

Proposition 3 ([3]). Let C be a pattern avoidance class. Then C is atomic iff C has the JEP.

In [2], Ruškuc posed the following question.

Question 4. Is there an algorithm that, given finite set of forbidden permutations, decides
whether the corresponding pattern avoidance class is atomic (equivalently, has the JEP)?

This problem is known to be decidable in certain restricted classes of permutations,
such as grid classes [4]. However, we believe there is a strong possibility this deci-
sion problem is undecidable in general. As a first approximation, we examine the
corresponding problem in the category of graphs. Here we obtain the following, via
a reduction to the tiling problem.

Theorem 5. There is no algorithm that, given a finite set of forbidden induced subgraphs,
decides whether the corresponding hereditary graph class has the JEP.

In the tiling problem, one is given a finite set of tile types, and is asked whether a
grid can be tiled, subject to constraints that certain tile-types cannot be horizontally
or vertically adjacent to certain others.
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A very rough sketch of the proof our theorem is as follows. The first two steps ensure
that the tiling problem is equivalent to whether we can joint-embed two particular
graphs, and the third step ensures that joint-embedding for the class is equivalent to
joint-embedding for those two graphs.

1. Construct two graphs A∗, representing a grid, and B∗ representing a suitable
collection of tiles.

2. Choose a finite set of constraints to ensure that successfully joint-embedding A∗

and B∗ requires producing a valid tiling of the grid points in A∗ with the tiles
from B∗

3. Show that if the tiling problem admits a solution, then the chosen class admits
a joint-embedding procedure.

We are hopeful that suitable coding techniques will allow this result to be brought
over to the category of permutations, although this currently seems more promising
for higher-dimensional permutations, i.e. structures in a language of 3 or more linear
orders.
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Permutation Classes and Infinite Antichains

Robert Brignall The Open University

Given some suitably defined permutation class (or family of permutation classes),
notable questions one might like answers to include: How many permutations of
length n are there? What is the growth rate of the class? Is it finitely based? What
do the permutations ‘look’ like? Although rather more vague than the others, the last
question in that list – asking for a structural characterization – can underpin the other
three. Here are some recent examples: (1) the drive by multiple authors to enumerate
the ‘2× 4’ classes, (2) bounding the growth rate of Av(1324), and (3) in the study of
grid classes, ‘geometric’ ones are (among other nice properties) finitely based.

Here’s another question: Does the class contain infinite antichains? Unless you’re
similarly-minded to me, it’s quite likely that this question wasn’t high on your list.
Nevertheless, in the last 10 years several authors (not including me) have established
that the existence of one particular infinite antichain, the ‘increasing oscillating an-
tichain’, has a profound impact on the theory of permutation classes: It tells us that
κ ≈ 2.206 is the smallest growth rate where there are uncountably many permuta-
tion classes, and below κ it helps to determine what the possible growth rates are;
it also guarantees that any real number about λ ≈ 2.357 is the growth rate of some
permutation class. (In fact, the underpinning ‘oscillation’ structure has been known
to mathematical biologists at least since 1991 under the term ‘Gollan permutation’, as
the unique (up to symmetry) hardest permutation to sort by reversals.)

With the aid of a variant of permutation containment called ‘labelled containment’,
in this talk I will survey instances where the existence of — or (more often) lack of
— infinite antichains in a permutation class interacts with these other questions. I
will report on recent joint work with David Bevan and Nik Ruškuc in the study of
monotone grid classes, where a result on classifying the infinite antichains also tells
us that every ‘unicyclic’ monotone grid class must be finitely based.
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Some Relations on Prefix Reversal Generators of the Symmetric

and Hyperoctahedral Group

Charles Buehrle Indiana University

This talk is based on joint work with Saúl A. Blanco

In this extended abstract, we describe some relations satisfied by prefix-reversal gen-
erators of the symmetric groups. We also describe all relations satisfied by two gen-
erators in the group of signed permutations and draw connections with cycles in the
pancake graph (Cayley graph with vertex set permutations or signed permutations
using the prefix-reversal as generators).

Introduction

The first appearance of the pancake problem in print was in the Problems and Solu-
tions section of the December 1975 Monthly [8].

The chef in our place is sloppy, and when he prepares a stack of pancakes
they come out all different sizes. Therefore, when I deliver them to a cus-
tomer, on the way to the table I rearrange them (so that the smallest winds
up on top, and so on, down to the largest on the bottom) by grabbing
several from the top and flipping them over, repeating this (varying the
number I flip) as many times as necessary. If there are n pancakes, what
is the maximum number of flips (as a function f (n) of n) that I will ever
have to use to rearrange them?

The problem of determining the maximum number of flips that are ever needed to
sort a stack of n pancakes is known as the pancake problem, and the f (n) is known as
the pancake number.

This initial posing of the problem was made by Goodman under the pseudonym
Harry Dweighter (a pun for “harried waiter"). In [9], as a commentary to the problem
formulation in [8], Garey, Johnson, and Lin gave the first upper and lower bound to
the the pancake number:

n + 1 ≤ f (n) ≤ 2n− 6 for n ≥ 7.

Subsequent results have been successful in tightening these bounds. The first sig-
nificant tightening of the bounds was described in the work of Gates and Papadim-
itriou [11], which incidentally is the only academic paper Gates ever wrote. The best
upper and lower bound known today for the general case appeared in [5] and [12],
respectively. Combined, one has that

15
⌊ n

14

⌋
≤ f (n) ≤ 18n

11
+ O(1).
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Computing the pancake number for a given n is a complicated task. To our knowl-
edge, the exact value of f (n) is only known for 1 ≤ n ≤ 19 (see [2, 6, 7, 12, 16]).
In fact, determining the minimum number needed to sort a stack of pancakes is an
NP-hard problem [4], though 2-approximation algorithms exists [10].

The pancake problem has connections to parallel computing, in particular in the de-
sign of symmetric interconnection networks (networks used to route data between the
processors in a multiprocessor computing system) where the so-called pancake graph,
the Cayley graph of the symmetric group under prefix reversals, gives a model for
processor interconnections (see [1, 18]). One can also define a burnt pancake graph on
signed permutations.

Terminology and Notation

Let Sn be the group of permutations of the set [n] := {1, 2, . . . , n} and denote by e
the identity permutation. The group Sn is generated by the set S := {s1, . . . , sn−1} of
adjacent transpositions; that is, si = (i, i + 1) in cycle notation. The set S is subject
to the relations s2

i = e for all 1 ≤ i ≤ n− 1, (sisi+1)
3 = e for all 1 ≤ i ≤ n− 2, and

sisj = sjsi for all i, j ∈ [n− 1] with |i− j| ≥ 2.

The pancake problem has a straight-forward interpretation in terms of permutations.
A stack of n pancakes of different sizes can be thought of as an element of Sn and
flipping a stack of pancakes with a spatula can be thought of as using a prefix reversal
permutation; that is, a permutation whose only action when composed with w ∈ Sn
is to reverse the first so many characters of w, in one-line notation. In other words,
using one-line notation, a prefix reversal permutation of Sn has the form

(i + 1) i (i− 1) · · · 2 1 (i + 2) (i + 3) · · · n

= (1, i + 1)(2, i) · · ·
(⌊

i + 2
2

⌋
,
⌈

i + 2
2

⌉)
, as a product of transpositions,

for some i ∈ [n− 1].

We denote the above permutation by fi, with 1 ≤ i ≤ n− 1 and define P = { f1, . . . , fn−1}.
For example, in S4 one has f1 = 2134, f2 = 3214, and f3 = 4321. Notice that effect
of applying fi to a permutation is similar to that of using a spatula to flip a stack of
pancakes since one is reversing the order of the first i + 1 entries and leaving the rest
untouched.

One can easily see that si = fi f1 fi and that fi = s1 . . . si−1 . . . s2s1si . . . s2s1. Hence, Sn
is also generated by P. We refer to the elements of P as pancake generators of Sn.

Let Bn be the hyperoctahedral group, most commonly referred to as the group of signed
permutations of the set [±n] = {n, n− 1, . . . , 1, 1, 2, . . . , n}, where i = −i. That is,
permutations w of [±n] satisfying w(i) = w(i) for all i ∈ [±n]. We shall use window
notation to denote w ∈ Bn; that is, we denote w by [w(1) w(2) . . . w(n)]. The group Bn
is generated by the set {sB

0 , sB
1 , . . . , sB

n−1}, where sB
0 = [1 2 · · · n] and for 1 ≤ i ≤ n− 1,
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sB
i = [1 2 · · · (i− 1) (i + 1) i (i + 2) · · · n] (see [3, Chapter 8]).

The burnt pancake generators affect the orientation of the entries: they are negative if
they have been reversed an odd number of times and positive otherwise. We define
f B
i , 1 ≤ i ≤ n− 1 to be the signed permutation

f B
i = [i + 1 i i− 1 · · · 2 1 (i + 2) (i + 3) · · · n]

= (1, i + 1, 1, i + 1)(2, i, 2, i) · · ·
(⌊

i + 2
2

⌋
,
⌈

i + 2
2

⌉
,
⌊

i + 2
2

⌋
,
⌈

i + 2
2

⌉)
in disjoint cycle form as elements of the symmetry group of [±n],

and f B
0 = sB

0 . Thus, for example, in B4 we have f B
0 = [1 2 3 4], f B

1 = [2 1 3 4], f B
2 =

[3 2 1 4], and f B
3 = [4 3 2 1]. We shall define PB = { f B

0 , f B
1 , . . . , f B

n−1} as the set of burnt
pancake generators, or burnt pancake flips.

One can see that sB
i = f B

i f B
0 f B

1 f B
0 f B

i for 1 ≤ i ≤ n − 1 and sB
0 = f B

0 , thus Bn is also
generated by PB. Furthermore, we note that f B

i = sB
0 sB

1 . . . sB
0 sB

i−1 . . . sB
2 sB

1 sB
0 sB

i . . . sB
2 sB

1 sB
0 .

Results

Sn results

In this section we take a look at the pancake generators for Sn. In this case, the pancake
matrix, Mn−1 = (mi,j)(n−1)×(n−1), where mi,j is the order of fi f j. The theorem below
provides a description for Mn−1. It turns out Mn−1 is symmetric and all its diagonal
entries are 1. Most of these entries are described by rephrasing [15, Lemma 1].

Theorem 1. If mi−1,j−1 is the order of fi−1 f j−1 with 1 < i < j ≤ n, then

1. mi−1,i−1 = 1,

2. mi−1,j−1 = mj−1,i−1,

3. m1,2 = 3, and

4. if j ≥ 4 then

(a) If 1 < i ≤ b j
2c ,then mi−1,j−1 = 4.

(b) If 1 < b j
2c < i < j− 1, then

mi−1,j−1 =



2q(q + 1), if r ≥ 2, t ≥ 2, or r = 1, t ≥ 2, q is even,
or r ≥ 2, t = 1, q is odd;

q(q + 1), if r = 1, t ≥ 2, q is odd, or r ≥ 2, t = 1, q is even,
or r = 1, t = 1;

2q, if r = 0.

where d = j− i, q = b j
dc, r = j (mod d) and t = d− r.

(c) If i = j− 1, then mi−1,j−1 = j
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Order of fi f j fk

We now discuss the order mi,j,k of fi f j fk. It turns out that all we need is to understand
the order in the case i ≤ j ≤ k, as the order of fσ(i) fσ(j) fσ(k) is also mi,j,k, as shown in
the following lemma.

Lemma 2. For all i, j, k with 1 ≤ i, j, k ≤ n and any permutation σ of {i, j, k}, the order of
fi f j fk is the same as the order of fσ(i) fσ(j) fσ(k).

Here are a collection of partial results on the orders of elements of the form fi f j fk.
Specifically these are all of the relations where the leftmost generator is f1, i.e. all of
the orders of f1 f j fk.

Theorem 3. If m1,j−1,k−1 is the order of f1 f j−1 fk−1 with 1 < j < k ≤ n, then

1. m1,1,j−1 = m1,j−1,j−1 = 2,

2. if j ≥ 6 then m1,2,j−1 = 6,

3. if j = k− 1 then m1,j−1,k−1 = k− 1,

4. if j = k− 2 and k is odd or j = k− 3 and 2 6= k (mod 3) then m1,j−1,k−1 = k,

5. if k ≥ 5 then

(a) m1,j−1,k−1 =


4q, if r = 0, d ≥ 4;

2q + 1, if r = 1, d = 2;

q(3q + 1), if r = 1, d = 4 or r = 1, d ≥ 5, q is odd;

2q(3q + 1), if r = 1, d ≥ 5, q is even.

(b) m1,j−1,k−1 =



q(q + 1), if r = 2, d = 3, or r = 2, d ≥ 4, q is odd, or
r = 3, d = 4, 0 = q (mod 3), or r = 3, d ≥ 5,

q = 3 (mod 6), or r ≥ 4, d ≥ 5, 0 = q (mod 4);

2q(q + 1), if r = 2, d ≥ 4, q is even, or r = 3, d ≥ 5,

0 = q (mod 6), or r ≥ 4, d ≥ 5, 2 = q (mod 4);

3q(q + 1), if r = 3, d = 4, 0 6= q (mod 3), or r = 3, d ≥ 5,

1, 5 = q (mod 6);

4q(q + 1), if r ≥ 4, d ≥ 5, q is odd;

6q(q + 1), if r = 3, d ≥ 5, 2, 4 = q (mod 6);

where d = k− j, q =
⌊

k
d

⌋
, and r = k (mod d).

In the next section, we describe the pancake matrix for Bn, and make connections to
the corresponding pancake graph of Bn.
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Bn results

We now provide a complete description for the order of f B
i f B

j , 0 ≤ i, j ≤ n − 1 for
signed permutations.

Theorem 4. If mB
i−1,j−1 is the order of f B

i−1 f B
j−1 with 1 ≤ i < j ≤ n, then

1. mB
i−1,i−1 = 1,

2. mB
i−1,j−1 = mB

j−1,i−1,

3. If 1 < i ≤ b j
2c (with j ≥ 4) then mB

i−1,j−1 = 4.

4. If 1 ≤ b j
2c < i < j− 1 (with j ≥ 4), then

mB
i−1,j−1 =

{
2q if r = 0, and
2q(q + 1) if r 6= 0

where d = j− i, q = b j
dc, r = j (mod d),

5. If i = j− 1 (with j ≥ 3) then mB
i−1,j−1 = 2j.

Connection with the burnt pancake graph

The Pancake graph for Sn, and in particular its cycle structure, has been extensively
studied (see, for example, [2, 12, 13, 14, 16, 15, 17]). From the results of Theorem 4, one
can derive results regarding the cycle structure of the Cayley graph corresponding to
Bn generated by PB.

Theorem 5. The Cayley graph of Bn with the generators PB (burnt pancake graph for Bn),
with n ≥ 2, contains a maximal set of 2nn!

` independent `-cycles of the form ( f B
i f B

j )
k, with

0 ≤ i < j < n, ` = 2k and k = (MB
n )i+1,j+1, the (i + 1, j + 1) entry in MB

n .

A straightforward observation is that any cycle in the burnt pancake graph is even.
Indeed, if we notice the action pancake generators have on the first element of any
signed permutation, in window notation, we see that its sign changes every time it is
multiplied by a pancake generator. Therefore, if there were an odd cycle, f B

i1 f B
i2 · · · f B

i2k+1
,

then the sign of f B
i1 f B

i2 · · · f B
i2k+1

(1) would be negative. Hence we have the following
proposition.

Proposition 6. If C is a cycle in the burnt pancake graph for Bn, then the length of C is even.

We recall that a chord in a cycle C is an edge not belonging to a C that connects
two vertices of C. Just in the case for the pancake graph of Sn (see [15]), the cycles
described in Theorem 5 have no chords. We make this formal in the following Lemma.

58



Lemma 7. The cycles described in Thoerem 5 have no chords. Moreover, the burnt pancake
graph for Bn does not have a simple cycle of length six.

The authors are grateful to Ivars Peterson for an introduction to the subject whose talk in 2014
at the EPaDel sectional meeting inspired this paper. We also thank Jacob Mooney and Kyle
Yohler for independently writing computer code to verify our results.
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Enumerating Permutations Sortable by k Passes Through

a Pop-Stack

Anders Claesson University of Iceland

This talk is based on joint work with Bjarki Ágúst Guðmundsson

Introduction

Knuth [2, Exercise 2.2.1.5] noted that permutations sortable by a stack are precisely
those that do not contain a subsequence in the same relative order as the permutation
231. This exercise inspired a wide range of research and can be seen as the starting
point of the research field we now call permutation patterns.

A closely related problem is that of sorting permutations by k passes through a stack,
where the elements on the stack are required to be increasing when read from top
to bottom. West [5] characterized the permutations sortable by two passes through a
stack in terms of pattern avoidance and conjectured their enumeration, a conjecture
that was subsequently proved by Zeilberger [6]. Permutations sortable by three passes
have been characterized by Úlfarsson [4], but their enumeration is unknown.

In other variations of Knuth’s exercise different data structures are used for sorting.
One notable example, introduced by Avis and Newborn [1] in 1981, is that of pop-
stacks: a stack where each pop operation completely empties the stack. Let Pk(x)
be the generating function for the permutations sortable by k passes through a pop-
stack. The generating function P2(x) was recently given by Pudwell and Smith [3]
(the case k = 1 being trivial). They characterized the permutations sortable by two
passes through a pop-stack in terms of pattern avoidance. They also gave a bijection
between certain families of polyominoes and the permutations sortable by one or two
passes through a pop-stack, but noted that the bijection does not generalize to three
passes.

We show that Pk(x) is rational for any k. Moreover, we give an algorithm to derive
Pk(x), and using it we determine the generating functions Pk(x) for k ≤ 6.

Main results

A single pass of the pop-stack sorting operator formally works as follows. Processing
a permutation π = a1a2 . . . an of [n] = {1, . . . , n} from left to right, if the stack is
empty or its top element is smaller than the current element ai then perform a single
pop operation (a), emptying the stack and appending those elements to the output
permutation; else do nothing (d). Next, push ai onto the stack and proceed with
element ai+1, or if i = n perform one final pop operation (a), again emptying the
stack onto the output permutation, and terminate. Define P(π) as the final output
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7 5 2 4 9 1 8 6 3

2 5 7 4 1 9 3 6 8

2 5 1 4 7 3 9 6 8

2 1 5 4 3 7 6 9 8

1 2 3 4 5 6 7 8 9
Figure 1: A sorting trace . . . Figure 2: . . . and its sorting plan

a d d a a d a d d a
a a a d d a d a a a
a a d a a d a d a a
a d a d d a d a d a

Figure 3: The same sorting plan . . .

0, 9, 10, 5, 5, 10, 5, 10, 9, 0

Figure 4: . . . and its encoding

permutation and w(π) as the word over the alphabet {a, d} defined by the operations
performed when processing π. Note that w(π) will always begin and end with the
letter a. We will call any word of length n + 1 with letters in {a, d} that begin and end
with the letter a an operation sequence.

Consider applying the pop-stack operator P to a permutation π of [n]. Start by inter-
leaving w(π) with π. Replacing a with a bar and d with a space, and placing P(π)
below this string, we get:

7 5 2 4 9 1 8 6 3
2 5 7 4 1 9 3 6 8

We call the numbers between pairs of successive a’s blocks. Above, the blocks are
752, 4, 91, and 863. Note that P(π) can be obtained from π by reversing each block.
Further, w(π) = c1c2 . . . cn+1 is simply the ascent/descent word of −∞π ∞; i.e. c1 =
cn+1 = a and, for 2 ≤ i ≤ n, ci = a if i− 1 is an ascent, and ci = d if i− 1 is a descent.

A figure such as the one above can be extended to depict multiple passes. Applying
P to the example permutation, π, until it is sorted gives Figure 1. We will call such
figures sorting traces, or traces for short. The structure that remains when removing
the numbers from a trace—see Figure 2—we call its sorting plan. Each row of a sorting
plan corresponds to an operation sequence, and for convenience we shall number
the rows 1 through k, from top to bottom. The example sorting plan can be viewed
as the array of operation sequences given in Figure 3. By interpreting each column
as a binary number with a = 0 and d = 1 the sorting plan can more compactly be
represented, or encoded, with a sequence of numbers: see Figure 4.

Our goal is to count the permutations of [n] that are sortable by k passes through a
pop-stack, or k-pop-stack-sortable permutations for short. Starting with a k-pop-stack-
sortable permutation of [n] and performing k passes of the pop-stack sorting operator
results in a trace of length n and order k. Conversely, the first row of that trace
is the k-pop-stack-sortable permutation we started with. Thus, k-pop-stack-sortable
permutations of [n] are in one-to-one correspondence with traces of length n and
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order k. Those are, in turn, in one-to-one correspondence with their sorting plans,
and hence it suffices to count sorting plans of length n and order k, or, equivalently,
their encodings.

Let us call any k-tuple of operation sequences of length n + 1 an operation array of
length n + 1 and order k. Note that sorting plans are operation arrays, but not all
operation arrays are sorting plans. We shall characterize those operation arrays that
are sorting plans, then count the sorting plans of order k, and by extension the k-
pop-stack-sortable permutations. For instance, it is easy to see that each operation
sequence represents a sorting plan of order 1. An operation sequence starts and ends
with the letter a. The remaining letters can be either a or d, and we have rediscovered
the well know fact that the number of 1-pop-stack-sortable permutations of [n] is 2n−1.

While this simple example outlines our approach to count k-pop-stack-sortable per-
mutations, it is a little too simple, as for larger k, most operation arrays will not be
sorting plans. As an example, we present the following lemma.

Lemma 1. In a trace of order 2 or greater, each operation sequence—except for the first one—
contains at most 2 consecutive d’s. Or, equivalently, each row of the sorting plan—except for
the first one—has blocks of size at most 3.

This lemma characterizes a certain class of operation arrays that are not sorting plans,
namely those that have at least one block of size 4 or larger in rows 2 to k. A more
general approach towards characterizing operation arrays that are not sorting plans is
to consider what we call forbidden segments. The definition of a segment is as follows:
Let ψ be the bijection mapping a sorting plan to its encoding. Let M be a sorting
plan of length n and suppose that 1 ≤ i ≤ j ≤ n + 1. Let ψ(M) = c1c2 . . . cn+1 be the
encoding of M. Then we call S = ψ−1(cici+1 . . . cj) a segment of M.

We shall not formally define what the forbidden segments are, but they are certain
segments that must be avoided in order for an operation array to be a sorting plan.
Figures 5, 6, 7 and 8 are meant to convey the rough idea, in which a semitrace is
a simple generalization of a trace: Figure 6 shows how the pair of numbers (2, 4)
progress through the semitrace. The segment T2,4, shown in Figure 7, is the smallest
segment that contains all blocks on rows 2, 3, 4, and 5 with at least one circled element.

Any operation array of order 5 that contains this segment, no matter where it occurs
horizontally, will fail to be a sorting plan/trace, not just as the above semitrace. This
is because we can follow the two elements a and b playing the roles of 2 and 4 from
the bottom to the second row, as shown in Figure 8.

Definition 2. A segment of order k is bounded if each of its blocks in rows 2 to k has
size at most 3.

We establish the following lemmas.

Lemma 3. An operation array is a sorting plan if and only if it does not contain any bounded
forbidden segment and each block on rows 2 through k is of size at most 3.
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1 2 3 4 5 6 7 8

1 3 2 5 4 6 7 8

3 1 5 2 4 7 6 8

3 5 1 7 4 2 6 8

5 3 7 1 4 2 8 6

7 3 5 1 6 8 2 4

Figure 5: An example semitrace

1 2 3 4 5 6 7 8

1 3 2 5 4 6 7 8

3 1 5 2 4 7 6 8

3 5 1 7 4 2 6 8

5 3 7 1 4 2 8 6

7 3 5 1 6 8 2 4

Figure 6: The progress of 2 and 4

Figure 7: The segment T2,4

a b

a b

a b

b a

b a

a b

Figure 8: Following a and b

start
0

0

0

0 0

Σ

0

Figure 9

start Ai
Ai

Ai

ΣAi

Ai

Ai

Figure 10

Lemma 4. Let T be a semitrace of length n and order k and let a and b be two distinct elements
of [n]. If Ta,b is a bounded segment, and there is a block, not on the first row, that includes
both a and b, then |Ta,b| ≤ 4k− 5.

Lemma 5. For a fixed k, there are finitely many bounded forbidden segments of order k, and
they can be listed.

Recall that we can encode an operation array of length n and order k as a sequence of
n integers, each in the range [0, 2k − 1]. In this way we can consider operation arrays
as strings of a formal language over the alphabet Σ = {0, 1, . . . , 2k − 1}. Conversely,
strings over this alphabet can be considered as operation arrays, under one condition:
that they both begin and end with a solid boundary. Noting that a solid boundary
corresponds to the integer 0 from Σ, and letting 0 = Σ \ {0}, the DFA W in Figure 9
recognizes the strings over Σ that begin and end with a solid boundary, i.e. the strings
that correspond to an operation array.

Recall from Lemma 3 that an operation array is a sorting plan if and only if it does
not contain any bounded forbidden segments and each block on rows 2 through k is
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of size at most 3. We shall start with the latter condition.

If Ai is the set of symbols from Σ that represent a column from the operation array
that has a bar in the ith row, and Ai = Σ \ Ai, then the intersection of W with the
automaton, Ri, in Figure 10 recognizes the operation arrays that have blocks of size at
most 3 in row i. Therefore, the set of operation arrays that have blocks of size at most
3 in all but the first row is recognized by the automaton W ∩ R2 ∩ · · · ∩ Rk.

The other condition that sorting plans satisfy is that they do not contain any bounded
forbidden segments. Consider a segment M and let us encode it in the same manner
as we encode operation arrays, resulting in the sequence m1, . . . , m`. Note that an
operation array A contains M if and only if the encoding of A contains m1 · · ·m` as a
factor. Furthermore, the following nondeterministic finite automaton, QM, recognizes
the set of strings over Σ that contain the encoding of M as a factor:

start . . .
m1 m2 m`−1 m`

Σ Σ

Taking the complement of QM we get an automaton QM that recognizes the set of
strings over Σ that do not contain the factor M. In particular, if F is a forbidden
segment, then W ∩ QF recognizes the set of operation arrays that do not contain F.
Let F be the set of bounded forbidden segments, which is finite by Lemma 5. Then

S = W ∩
k⋂

i=2

Ri ∩
⋂

F∈F
QF

recognizes the set of operation arrays that have blocks of size at most 3 in rows 2
through k, and do not contain any bounded forbidden segments. Hence, by Lemma 3,
S recognizes exactly the set of sorting plans, giving us:

Proposition 6. The language S = { w ∈ Σ∗ | w is encoding a sorting plan } is regular.

Theorem 7. For a fixed k, the generating function Pk(x) = ∑∞
n=0 pnxn, where pn is the

number of k-pop-stack-sortable permutations of length n, is rational.

All of the above results are constructive, meaning that the generating function can be
computed for any fixed k. We did so for k = 1, . . . , 6. In Table 1 we list the resulting
generating functions for k ∈ {1, 2, 3}. For k ∈ {4, 5, 6} the expressions are too large to
display here, but all the generating functions, source code, and text files defining the
DFAs can be found on GitHub at

https://github.com/SuprDewd/popstacks
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k Generating function

1
x− 1

2x− 1

2
x3 + x2 + x− 1

2x3 + x2 + 2x− 1

3
2x10 + 4x9 + 2x8 + 5x7 + 11x6 + 8x5 + 6x4 + 6x3 + 2x2 + x− 1

4x10 + 8x9 + 4x8 + 10x7 + 22x6 + 16x5 + 8x4 + 6x3 + 2x2 + 2x− 1

Table 1: The generating functions for the k-pop-stack-sortable permutations, k ≤ 3
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Pattern Avoidance in Motzkin Paths

Daniel Daly Southeast Missouri State University

This talk is based on joint work with Mary Ramey

In [1], Bernini, Ferrari, Pinzani and West began the study of pattern avoidance for
lattice paths and specifically obtained many enumerative results concerning pattern
avoidance in Dyck paths. Here we study pattern avoidance for Motzkin paths and
obtain enumeration results for patterns of small length.

A Motzkin path is a lattice path from (0, 0) to (n, 0) using only the steps (1, 1), (1,−1)
and (1, 0) and never going below the x-axis. Hence any Motzkin path from (0, 0) to
(n, 0) can be encoded as a sequence of n letters on the alphabet {U, D, H} where the
number of U’s equals the number of D’s and the number of U’s to the left of any
point is greater than or equal to the number of D’s to the left of that same point.

A Motzkin path π contains another path σ if π contains σ as a subsequence. If not π

avoids σ. We define Mn(σ) to be the set of all Motzkin paths avoiding σ and mn(σ)
to be the cardinality of Mn(σ). As might be expected, the enumeration of mn(σ) for
various choices of σ involves Catalan numbers, central binomial coefficients, powers
of 2 and other classical combinatorial sequences.

For paths of length 3, there are two Wilf-equivalence classes: {UDH, HUD} and
{UHD}. For these, we have

Theorem 1.

mn(UDH) = mn(HUD) =

(
n

bn/2c

)
(A001405)

Theorem 2.

mn(UHD) = 1 +
bn/2c

∑
k=1

(n− 2k + 1)Ck

To prove Theorem 1, we create a bijection between Mn(UDH) and a set of left Dyck
factors. There is also a nice recurrence for this sequence which generates an interesting
combinatorial identity involving Catalan numbers and central binomial coefficients.

In this talk, we will expand on these results and also discuss enumeration results for
patterns of length four and some patterns of more general length. Some enumeration
sequences found are well known in the OEIS, though many have been found that
appear to be new.
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Universal Permutations

Michael Engen University of Florida

This talk is based on joint work with Michael Albert, Jay Pantone, and Vince Vatter

The problem of finding the length of a shortest permutation containing all permu-
tations of length n appears to have first been considered by Arratia [2] in 1999. He
presented the trivial upper and lower bounds of n2 and n2/e2, respectively. We say
a permutation is n-universal if it contains all permutations of length n (the alternate
term superpattern is sometimes used in the literature).

To-date, no progress has been made on the lower bound of n2/e2 in this case, but there
have been two previous improvements to the upper bound. In a paper first appearing
in 2007 but based on 2002 work, Eriksson, Eriksson, Linusson, and Wästlund [3]
improved the upper bound to 2n2/3 (up to a little-oh factor). In 2009, Miller [5]
further improved this bound to (n+1

2 ).

We establish the following.

Theorem 1 (Engen and Vatter, in preparation). There is an n-universal permutation of
length d(n2 + 1)/2e.

Given a permutation class C, the permutation π is said to be n-universal for C if π

contains all of the permutations of length n in C. In [1], we give an explicit formula
for the length of the shortest permutations which are n-universal for the class of
layered permutations. Moreover, we show that there are shortest permutations which
are n-universal for the class of layered permutations which are themselves layered,
proving a conjecture of Gray [4].
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Automatic Enumeration of Grid Classes

Unnar Freyr Erlendsson Reykjavik University

This talk is based on joint work with Christian Bean and Henning Úlfarsson

Given a matrix M whose entries are permutation classes, the permutations in the
grid class defined byM, Grid(M), are those which can have a grid drawn on it such
that the subpermutation in each box is in the corresponding permutation class inM.
Figure 1 shows an example of this.

Figure 1: The red and the blue lines show two different griddings of 3421 withM =
( Av(21) Av(12) ).

In this paper, we are interested in 1× N grid classes, and we will write Grid(A|B) to
represent the grid class defined by the 1× 2 matrixM =

(
Av(A) Av(B)

)
.

In [1] they enumerated 1× 2 grid classes of the form Grid(σ, τ) where σ ∈ S3, τ ∈ S2.
To do this they introduced the notion of greedily gridding the permutation by putting
as many of the points in the first box as possible. We extend this idea to general 1×N
grid classes and using the TileScope algorithm automatically enumerate some of these.

The TileScope algorithm can be used to try to enumerate the number of griddings on a
slightly more fine grained version of grid classes called tilings. In the definition of grid
classes you start with a permutation and try to draw on a grid but in tilings you go in
the other direction, start with a grid and draw the permutation. A gridded permutation
is a permutation together with integer cells in each points exponent, called the gridded
position, that tells you which cell the point is in. We say a gridded permutation is
local in cell (i, j) if the gridded position of all points is (i, j) and denote it as π(i,j).
We define containment of gridded permutations in the same way as permutations but
adding the condition that the cells of the pattern and the occurence match. Figure 2
gives an example of containment of gridded permutations.

A tiling is a triple T = ((n, m),O,R = {R1,R2, . . . ,Rk}), where O is a set of gridded
permutations called obstructions to be avoided andR is a set of sets of gridded permu-
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Figure 2: The red gridded permutation 1(1,1)3(1,1)2(1,2)5(2,2)4(2,2)6(2,2)8(3,3)7(3,3) contains
the green gridded permutation 1(1,1)3(2,2)2(2,2)4(3,3) four times, 1(1,1)5(2,2)4(2,2)8(3,3),
1(1,1)5(2,2)4(2,2)7(3,3), 3(1,1)5(2,2)4(2,2)8(3,3) and 3(1,1)5(2,2)4(2,2)7(3,3).

Av(12|12|12)

Figure 3: Disambiguation of Av(12|12|12). Red points connected by lines represent
obstructions while green points connected by lines represent requirements. Note that
in the bottom right tiling the two requirements going to cell (4, 1) are in the same set
of requirements, that is you only have to contain one of them, not both. The blue lines
represents the drawing of the grid.

tations to be contained called requirements. Then Grid(T ) is the gridded permutations
with gridded positions in {1, . . . , n} × {1, . . . , m} that avoid all σ in O and contain all
R1 in R. We will say T = Grid(T ), and refer to gridded permutations being on a
tiling.

Disambiguation of a grid class

Theorem 1. Let G be a 1× N grid class. There exists a disjoint union of tilings T such that
the gridded permutations in T are in bijection with the griddable permutations in G.

We start with a 1× N grid class G where each cell (1, i) contains a permutation class
with a finite basis, Bi. Define Oi = {π(1,i) : π ∈ Bi}. We build the set of tilings from
left to right by essentially greedily gridding a permutation π ∈ G. Consider the first
cell, either π can be fully contained in cell (1, 1) or it contains one of the underlying
permutations of an obstruction in O1 meaning it will have to stretch to the next cell.
We will represent this as a disjoint union of tilings where the first tiling, t1, only
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Av(123, 132|12)

Figure 4: Combinatorial specification for Av(123, 132|12) where the black points rep-
resent precisely a point, red are obstructions and green are requirements. Note that in
the right child tiling of the root the requirements are in the same set of requirements.
The blue lines represent the grid being drawn. From this tree we can find that the
generating function for this class is 3x4−15x3+17x2−7x+1

12x4−28x3+23x2−8x+1 .

contains a single cell with the obstructions from O1.

To build ti where i > 1, we carry over all of the obstructions and requirements from
the tiling ti−1 and we will extend it by adding two new cells, (1, 2(i− 1)) and (1, 2i−
1). If π can not be gridded on any of tk, k < i then it must not have been fully
contained in the first i− 1 cells of G. We will create a set of requirements, Ri, which
will represent the idea that π could not be gridded on any of the previous tilings and
therefore must stretch into cell (1, i) in G. For every obstruction σ which contains at
least a single point in cell (1, 2(i − 1)− 1) in ti we will create a requirement τ with
the same underlying permutation as σ but the gridded position of the last point will
be in cell (1, 2(i− 1)). We will add the obstructions 12(2i−1,1) and 21(1,2i−1) to ensure
that cell (1, 2i− 1) contains only a single point. By doing that we are ensuring that it
is the leftmost point in cell (1, i) in G.

We also need to make sure that we restrict these two cells only to the permutations
that can be gridded on cell (1, i) in G. For every obstruction σ in cell (1, i) of G we
will add two obstructions, the obstruction where σ is local in cell (1, 2i− 1) and the
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n|m All Success
1|1 15 5
1|2 25 11
1|3 24 12
1|4 11 5
1|5 2 1
2|1 19 1
2|2 49 7
2|3 52 30
2|4 24 18
2|5 4 3
3|1 19 2
3|2 52 29
3|3 64 54
3|4 32 31
3|5 6 6
4|1 9 1
4|2 24 19
4|3 34 34
4|4 20 20
4|5 4 4
5|1 2 0
5|2 5 4
5|3 7 7
5|4 5 5
5|5 1 1

Total 509 310

Table 1: Table showing the number of successes for Av(A|B). n|m refers to the number
of patterns on each side.

gridded permutation with the same underlying permutation as σ where the gridded
position of the first point is in cell (1, 2(i − 1)) and the rest are in cell (1, 2i − 1).
Now t1, . . . , tn form a disjoint of tilings as per Theorem 1. We call this method the
disambiguation of a grid class. See Figure 3 for the disambiguation of Av(12|12|12).

Using disambiguation we can create a disjoint union of tilings which allows us to
use the TileScope algorithm to find a combinatorial specification and therefore also
finding the enumeration for some grid classes automatically.

Results

Using the method of disambiguating grid classes in combination with the TileScope
algorithm we have started enumerating all grid classes of the form Av A|B where A
and B are subsets of S2 ∪ S3. We only considered grid classes which are lexicograph-
ically minimum down to symmetry and where at least one side is not a finite class,
in total there are 1100 grid classes we considered. Table 1 shows the successes we
had running the TileScope algorithm for 72 hours on the disambiguated grid classes
where a success means that we have found a combinatorial specification for the given
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grid class which gives the enumeration. Figure 4 shows one of the combinatorial
specifications found by TileScope.

In particular, TileScope was able to enumerate 4 of the 6 juxtapositions discussed in
[1], namely Av(213|21), Av(132|12), Av(213|12) and Av(132|21).
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Knots and Permutations

Chaim Even-Zohar University of California, Davis

This talk is based on joint work with Joel Hass, Nati Linial, and Tahl Nowik

The study of permutations as representing knots was introduced by C. Adams et
al. [2], followed by a sequence of recent works [1, 3, 12, 11, 13, 10]. In this proposed
talk, we’ll describe this connection between permutations and knots, and how ques-
tions about properties of knots relate to ones about permutation statistics.

In particular, certain knot invariants can be expressed in terms of the number of
occurrences of permutation patterns. For example, the framing number of a knot
yields a circular variant of the inversion number of a permutation.

It is natural to define a model for random knots based on this representation, with
the uniform distribution on permutations. Such knot invariants can be studied as
permutation statistics in terms of their moments, limit distributions, etc. Our analysis
yields the first such results for any representation of knots.

The Construction

Intuitively, a knot is a simple closed curve, embedded in the three-dimensional space,
like a rope whose two ends are joined together. As usual for topological objects,
two knots are equivalent if one can be deformed into the other by continuous moves,
where stretching and squeezing are allowed but no cutting and pasting. See formal
definitions and further details in [4, 16].

There are infinitely many different knots, and it is not an easy task to sort out and
describe them all. A central theme in knot theory is to esablish and study convenient
discrete descriptions for all knots, using planar diagrams, closed braids, polygonal
paths on the grid, and more.

We now describe [2]’s basic construction of a knot K(π), given a permutation π of
odd size n. We consider a curve in R3 whose projection to the plane has one multi-
crossing point of n straight arcs, connected by petals as in Figure 1. The arcs’ heights
as they pass above the center are determined by the permutation π, which uniquely
defines the knot. Specifically, the entries of π list the heights of the n arcs according
to their order of occurrence as we traverse the curve, starting from an arbitrary petal.

Theorem 1 (Adams et al. [2]). Every knot K is obtained as K(π) by the above construction
from some permutation π.

This means that one can use permutations in order to represent all knots. It is natural
to ask how efficient this representation is, compared to other ones. A planar knot
diagram represents a knot by its projection to the plane, having a finite number of

75



1 3 5 7 2 6 4 → 1
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Figure 1: The heights of the arcs in the petal diagram are given by the permutation.

double points, called crossings, and marked to distinguish over- and under-strands.
For example, is one diagram of the trefoil knot.

By the following theorem, the efficiency of permutations in representing all knots is
quite comparable to that of diagrams.

Theorem 2 (Even-Zohar et al. [13]). Every nontrivial knot K, given by a diagram with c
crossings, is obtained as K(π) for some permutation π of size at most 2c− 1.

For example, the 3-crossing trefoil knot, is K(24135). The figure-eight knot, usually
represented by a diagram with 4 crossing, is also given by the permutation 1357264
as in Figure 1, and so on.

Some Properties

We next examine some simple operations on permutations, and their effect on the
corresponding knots. Let ρ ∈ Sn be the rotation ρ(x) = x + 1 mod n. Note that
the above construction is invariant to rotations from both directions. Indeed, we are
free to move the starting point to the next petal, or move the upper strand around
everything to be the lower one. In conclusion,

Proposition 3. For every odd n and π ∈ Sn, K(π) = K(π ◦ ρ) = K(ρ ◦ π)

It follows that one can assume without loss of generality that π(n) = n. For such
π ∈ Sn denote by π′ ∈ Sn−1 the permutation obtained by omitting the last entry.

The operation of connected sum, # = gives some structure to the set of
knots. Indeed, a theorem by Schubert states that every knot can be uniquely decom-
posed as a connected sum of prime knots, which are knot that cannot be decomposed
further. Given two knots represented as permutations, the direct sum of these permu-
tations yields the connected sum.

Proposition 4. If π ∈ Sn and σ ∈ Sm for odd n and m, then K(π)#K(σ) = K(π′ ⊕ σ).
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For example, the connected sum depicted above, of two trefoil knots, also known as
the granny knot, is K(24135)#K(24135) = K(2413⊕ 24135) = K(241368579).

Counting Unknots

It follows from the above that the representation of knots by permutations, similar to
other common methods, is far from being one-to-one. It is interesting to understand
how many different knots are obtained from permutations of size n, and how many
permutations represent a given knot K.

By taking π ∈ Sn uniformly at random, these become questions about the distribution
of a random knot K(π). The study of random knots is motivated by theoric as well
as practical perspectives, and this particular random model, which we call Petaluma,
seems to have certain desirable features. See [10] for a survey.

The Delbruck–Frisch–Wasserman conjecture [7, 14], states that a typical random knot
sould be non-trivial, i.e., not equivalent to the plain circle ©, the unknot. This conjec-
ture is known to hold in several random knot models [19, 17, 9, 8, 5], as well as the
one discussed here.

Theorem 5 (Even-Zohar et al. [13]). The number of permutations π ∈ Sn such that K(π) =
© is O(n!/n0.1).

The proof of Theorem 5 makes use of the connection between permutation patterns
and knot invariants, specifically the Casson invariant discussed below.

A lower bound on the number of unknots, relies on the following cancellation move.
Suppose that two consecutive entries in π ∈ Sn have consecutive values, such as 45
in 2614537. Then the two corresponding arcs can be pulled away and retract to one
petal, without crossing any other part of the knot, as in Figure 2. The remaining
heights, 26137 in this example, can be adjusted to produce a permutation in Sn−2 that
represents the same knot. In our example, K(2614537) = K(24135). We remark that
here the adjacency of entries and values in π : Zn → Zn is naturally cyclic, so that 1
and n work too.

Now one can easily construct dn/2e! different unknotted permutations, just by writ-
ing the pairs {1, 23, 45, 67, 89, . . . } in any possible order. One can also write 32 instead
of 23, and so on. These arguments yields the following lower bound.

Proposition 6. The number of permutations π ∈ Sn such that K(π) = ©, is Ω(
√

n!).

This construction only contains some of the permutations that can be reduced to 1
by a sequence of cancellations. Here is a more complicated example with nested
pairs: 5273461 → 52761 → 32541 → 321 → 1. This naturally raises a new intriguing
enumeration problem.
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Figure 2: The cancellation move: two adjacent arcs with adjacent heights can be re-
moved.

Question 7. How many permutations in Sn can be reduced to 1 by iterated cancellation of
pairs of adjacent entries with adjacent values?

An answer to Question 7 may improve the lower bound in Proposition 6 at most by an
exponential factor. There are however many permutations that represent the unknot,
and cannot be eliminated by cancellations. The smallest example is 1, 9, 3, 5, 7, 10, 2, 4, 8, 11, 6
given in [2].

It remains a central challenge to narrow the gap between the two bounds on the
number of permutations in Sn that represent the unknot.

Patterns and Invariants

Invariants are functions that are well-defined on the set of all knots, where usually
one has to show that they don’t differ on equivalent representations of the same knot.
Invariants can be used to distinguish one knot from another, but more generally they
can be viewed as tools to classify knots and understand their properties.

Finite type invariants are an important class of knot invariants, that includes the coeffi-
cients of the Alexander–Conway polynomial, the modified Jones polynomial, and the
Kontsevich integral. It is conjectured that knots can be fully classified by finite type
invariants. We omit the general definition, and refer to [6].

Goussarov, Polyak and Viro showed that finite type invariants can be computed from
knot diagrams using Gauss diagram formulas [18, 15]. These formulas involve sum-
mation over sets of k crossings in a knot diagram, where k is the order of the invariant.

Using our representation of knots by permutations, every knot invariant v(·) induces
a permutation statistic v(K(·)), which is interesting to study. In particular, a formula
for a finite type invariant of order k translates into summation over sets of up to 2k
entries in the permutation. These sums can be viewed as signed or weighted counts
of patterns. We discuss two examples for such invariants, of orders one and two.
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Signed and Circular Inversion Numbers

Consider the following permutation statistic, which is an alternating version of the
inversion number.

i(σ) = ∑
1≤x<y≤n

(−1)x+y

{
+1 σ(x) < σ(y)
−1 σ(x) > σ(y)

σ ∈ Sn, n odd

By a simple transformation π(x) = σ(2x mod n), one can show that i is equidis-
tributed with another permutation statistic, the writhe,

w(π) =
n

∑
x=1

bn/2c

∑
d=1

{
+1 π(x) < π(x + d mod n)
−1 π(x) > π(x + d mod n)

π ∈ Sn, n odd

This permutation statistic essentially counts inversions in π between pairs at distance
of up to half-way around the cycle Zn.

The construction by Adams can be slightly generalized so that π represents a framed
knot. Then the writhe w(π) is exactly the framing number, also known as self-linking.
One can think of a framed knot as a narrow ribbon, and of the framing as counting
its “twists”, where the framing is zero if the ribbon extends to an embedded surface
bounded by the knot. See our paper [11], for more details on framed knots and
inversion numbers. The framing number is a first order invariant, and as such it can
be computed by summation over pairs.

We study the writhe distribution for random knots, or permutations. We show that
its typical order of magnitude is n, unlike n3/2 for the usual inversion number. We
give explicit formulas for its moments, and deduce a non-normal limit law. See [11]
for more details on the limit distribution W.

Theorem 8 (Even-Zohar [11]). There exists a continuous distribution W on R such that for
a uniformly random permutation π ∈ Sn,

w(π)

n
D−−−→

n→∞
W

See [12] for a similar analysis of a classical first-order finite type invariants of 2-
component links, the Gauss linking number.

The Casson Invariant

The Casson invariant c2 is the coefficient of x2 in the Alexander–Conway polynomial,
and the only finite type knot invariant of order two. Here is its definition as a permu-
tation statistic.

c2(π) = ∑
a≤b≤c≤d ?

(−1)a+b+c+d+1

{
1 π(a) < π(c), π(b) > π(d)
0 otherwise

π ∈ Sn, n odd
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where a, b, c, d are between 1 and n, and if there is one equality among them then they
all have to agree mod 2, except for d if a = b, or a if c = d. In conclusion, we have
a weighted pattern count of size up to four, where the weights only depend on the
pattern and on the parities of the indices.

In [12], we study this permutation statistic. We show that it is typically of order
of magnitude n2, and after normalization it tends to be positive, with an intriguing
asymmetric distribution. Our main open problem from [12] is to show that the typical
order of magnitude of a finite type invariant of order k, is nk. This is clearly not the
case for any permutation statistic that sums over 2k-long patterns in π ∈ Sn. Thus a
solution should somehow rely on the knot-theoretic properties of these statistics.

We expect the relation between finite type invariants of knots and permutation pat-
terns to produce more interesting results and connections. Another direction is es-
tablishing deterministic, extremal results for these invariants, perhaps in terms the
number of petals. That may tell us more about these knot invariants and lead to
interesting constructions of knots.
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Stack Sorting with Increasing and Decreasing Stacks

Luca Ferrari University of Firenze

This talk is based on joint work with Giulio Cerbai

The problem of sorting a permutation using a stack was first introduced by Knuth [4]
in the 1960s; in its classical formulation, the aim is to sort a permutation using a first-
in/last-out device. As it is well known, in this case the set of sortable permutations
is a class, whose basis consists of the single element 231, and whose enumeration is
given by Catalan numbers.

More generally (see [6]), one can consider a network of sorting devices, each of which
is represented as a node in a directed graph; when there is an arc from node S to node
T the machine is allowed to pop an element from S and push it into T; if we mark
two distinct vertices as the input and the output machine, then the sorting problem
consists of looking for a sequence of operations that allows us to move a permutation
from the input to the output machine, thus obtaining the identity permutation.

In this framework, some of the typical problems are the following:

• characterize the permutations that can be sorted by a given network;

• enumerate sortable permutations with respect to their length;

• if the network is too complex, find a specific algorithm that sorts “many" input
permutations and characterize such permutations.

Concerning the last stated problem, note that, for a given network of devices, although
the set of sortable permutations forms a class in general, this is not anymore true if one
choose a specific sorting strategy; this approach leads in general to more complicated
characterizations which involve other kinds of patterns (as it happens, for instance,
for the 2-West stack-sortable permutations [7]).

Although it’s very hard to obtain interesting results for large networks, a lot of work
has been done for some particular, small networks (see [2] for a dated survey, or [3]
for a more recent one); in this work we restrict our attention to the case of stacks in
series, with the restriction that the elements are maintained inside each stack either
in increasing or in decreasing order. Our starting point is [5], where Rebecca Smith
proves that the permutations sorted by a decreasing stack followed by an increasing
one form the class Av(3241, 3142).

Many decreasing stacks followed by an increasing one. Generalizing the approach
of [5], we will consider here a sorting device made by k decreasing stacks in series,
denoted by D1, . . . , Dk, followed by an increasing stack I. Recall that “decreasing"
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(resp., “increasing") stack means that the elements inside the stack have to be in de-
creasing (resp., increasing) order from top to bottom. When k = 0, we just have a
single increasing stack, so we obtain the usual Stacksort procedure. When k = 1, we
obtain exactly the DI machine described in [5]. In the sequel we denote our machine
with Dk I.

The possible operations the Dk I machine can perform are the following:

• d0: push the next element of the input permutation into the first decreasing
stack D1;

• di, for i = 1, . . . , k − 1: pop an element from Di and push it into the next de-
creasing stack Di+1;

• dk: pop an element from Dk and push it into the increasing stack I;

• dk+1: pop an element from the increasing stack I and output it (by placing it on
the right of the list of elements that have already been output).

Notice that each operation can be performed only if it does not violate the restrictions
of the stacks; in this case, we call it a legal operation. For the special case of the
operation dk+1, we will assume that dk+1 is legal either if we are pushing into the
output the smallest among the elements not already in the output or if all the other
operations are not legal.

For any given k, we are now interested in characterizing the set

B(k) = {π ∈ S | there is a sequence of legal operations di1 , . . . , dis that sorts π}.

If π ∈ B(k), we say that π is k-sortable. Using a standard argument it is easy to show
that B(k) is a class, for every k.

The natural way to describe the class B(k) is to understand its basis. Here we show
that, when k = 2, the basis of B(k) is infinite, by explicitly finding an infinite antichain
of permutations which are not 2-sortable and are minimal with respect to the pattern
ordering. The construction of the infinite antichain described in the next theorem can
be easily adapted to every k ≥ 2. An extremely useful tool to find such an antichain
has been the software PermLab [1], developed by Michael Albert.

Theorem 1. For j ≥ 0, define the permutation:

αj = 2j + 4, 3, a1, b1, a2, b2, . . . , aj, bj, 1, 5, 2

where:{
Aj = (a1, . . . , aj) = (2j + 2, 2j, 2j− 2, . . . , 6, 4),

Bj = (b1, . . . , bj) = (2j + 5, 2j + 3, 2j + 1, . . . , 9, 7).
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Then the set of permutations {αj}j≥0 constitutes an infinite antichain each of whose elements
is not 2-sortable. Moreover, αj is minimal with respect to such a property, i.e. if we remove
any element of αj we obtain a 2-sortable permutation. As a consequence, the basis of B(2) is
infinite, since it contains the infinite antichain {αj}j≥0.

A left-greedy algorithm. Instead of making an unrestricted use of the Dk I machine,
we may define a specific algorithm, by choosing the priority of each operation. De-
pending on our choices, we obtain different sorting procedures: each of them deter-
mines a different set of sortable permutations, which is interesting to understand.

Our first proposal is a left-greedy procedure, where, at each step, we perform the
legal operation dj having maximum index j. Setting

Blg(k) = {π : π is sorted by the left-greedy procedure},

it turns out that Blg(k) is in fact a class, and we are able to completely characterize it.

Proposition 2. For every k ≥ 1, Blg(k) = Av(231).

Thus, using this left greedy algorithm, we obtain a procedure that sorts precisely the
same permutations as Stacksort does. Thus, in a sense, adding any number of de-
creasing stacks before an increasing one does not improve the sorting power of the
machine, if we always perform the leftmost legal operation. This does not mean, how-
ever, that this “left-greedy Dk I machine" is equivalent to Stacksort. Indeed, taking for
instance k = 1 and the input permutation 2341, the left-greedy Dk I machine returns
2134 as output, whereas Stacksort returns 2314. This is of course due to the fact that
the elements of the input permutation exit the (last) decreasing stack in a different
order in the two procedures. We can therefore define the map φk : Sn → Sn, for k ≥ 1,
that associates to an input permutation π of length n the output of the last stack Dk
in the left-greedy algorithm. As a consequence of the last proposition, for each π and
k ≥ 1, π ∈ Av(231) if and only if φk(π) ∈ Av(231). In order to have a better un-
derstanding of the left-greedy Dk I machine, it would be interesting to explore more
deeply the properties of the maps φk.

Example. We report the values of φk(π) when π = 36257418 and k = 1, 2, 3, 4, 5. It
is easy to observe that, for sufficiently large values of k, the succession {φk(π)}n∈N

eventually becomes constant. However, we do not know precisely when this happens.

k = 1 : 36275418,
k = 2 : 37652841,
k = 3 : 37652841,
k = 4 : 38765241,
k = 5 : 38765241.
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An almost left-greedy algorithm. There is a better way to design an almost left-
greedy algorithm, which is able to sort more permutations. The idea is to give the
increasing stack a privileged role, using it only when it is strictly necessary. Formally,
at each step we choose to perform the first legal operation according to the following
priority rule:

dk+1 > dk−1 > dk−2 > · · · > d1 > d0 > dk,

where d > d′ means that the priority of operation d is higher than the priority of
operation d′.

In analogy with the previous case, define Balg(k) as the set of permutations sorted
by the partial left-greedy algorithm with k decreasing stacks (from now on it will be
called the almost left-greedy Dk I machine). We notice immediately that the permu-
tation 231, which is not sorted by the left-greedy Dk I machine, is instead sortable by
the almost left-greedy DI machine: the sequence of the operations performed by the
algorithm in this case is d0, d0, d1, d1, d0, d1, d2, d2, d2. Unfortunately, in this case Balg(k)
is not in general a permutation class, except for the case k = 1, for which it is quite
easy to prove that the almost left-greedy strategy is equivalent to the (optimal) sorting
strategy defined in [5], so that Balg(1) = Av(3241, 3142). As an example, for k = 2,
the permutation 631425 can be sorted, whereas its subpermutation 52314 cannot.

The fact that Balg(k) is not a downset in general makes the analysis of the almost left-
greedy machine more difficult. However, when k = 2, we are able to obtain a partial
characterization of Balg(2) in terms of barred patterns.

Theorem 3. 1. Let π be an almost left-greedy D2 I sortable permutation; then:

• π avoids 3214;

• π avoids the following barred patterns, each of which is obtained by suitably adding
barred elements to the pattern 52314:

– 631̄425;
– 72̄1̄4536, 73̄1̄4526;
– 7̄2̄81̄4536, 7̄3̄81̄4526;
– 8̄2̄71̄4536, 8̄3̄71̄4526.

2. Let π be a permutation that is not almost left-greedy D2 I sortable. Then one of the
following cases holds:

• π contains 3214;

• π contains one of the barred patterns listed above;

• π contains an occurrence of 52314 that extends to 82714536 (resp., 83714526)
which in turn is part of one of the following patterns:

– 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);
– 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);
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– 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);
– 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
– 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);
– 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);
– 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

The above theorem fails to characterize Balg(2), due the long “bad" permutations
listed in (2). Unfortunately the construction used to obtain these "bad" patterns can
be repeated to generate, starting from 52314, a sequence of permutations of increasing
lengths whose sortability depends on how many times we iterate the construction. To
be more precise, define the permutations γm ∈ S3m+2 as follows:

γm = 3m + 2, 2 3m + 1 1︸ ︷︷ ︸
231

, 4 3m 3︸ ︷︷ ︸
231

. . . 2m− 2 2m + 32n− 3︸ ︷︷ ︸
231

2m 2m + 1 2m− 1︸ ︷︷ ︸
231

2m + 2.

In other words, starting from γ1 = 52314, γi+1 is obtained from γi by inserting a new
maximum in the first position and putting the old maximum between 2 and 1, then
suitably rescaling the remaining elements. We can prove that:

1. γi ≤ γi+1, for each i ≥ 1;

2. γi ∈ Balg(2) if and only if i is even.

For example, we have:

• γ1 = 52314 /∈ Balg(2);

• γ2 = 82714536 ∈ Balg(2);

• γ3 = 11 2 10 14936758 /∈ Balg(2);
...

The existence of an infinite sequence of permutations with this property suggests
that it would be quite difficult to obtain simple characterization of Balg(2); it is also
conceivable that it should be possible to adapt the above construction to greater values
of k, thus obtaining similar (negative) results.
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A Family of Bell Transformations

Juan B. Gil Penn State Altoona

This talk is based on joint work with Daniel Birmajer and Michael D. Weiner

Aiming at developing a unifying approach for a variety of enumeration problems,
and in the spirit of the work by E. T. Bell on partition polynomials, we introduce a
family of sequence transformations defined via partial Bell polynomials.

Let a, b, c, d be fixed. Given a sequence x = (xn)n∈N, we let y = Ya,b,c,d(x) be the
sequence defined by

yn =
n

∑
k=1

1
n!

[ k−1

∏
j=1

(an + bk + cj + d)
]

Bn,k(1!x1, 2!x2, . . . ) for n ≥ 1, (1)

where Bn,k denotes the (n, k)-th (exponential) partial Bell polynomial. We call Ya,b,c,d(x)
the Bell transform of x with parameters (a, b, c, d).

For k = 0, 1, 2, . . . , the polynomials Bn,k(z1, z2, . . . , zn−k+1) may be defined through the
series expansion

1
k!

( ∞

∑
j=1

zj
tj

j!

)k

=
∞

∑
n=k

Bn,k(z1, z2, . . . )
tn

n!
.

These polynomials are homogeneous of degree k, of weight n, and they can be written
as

Bn,k(z1, . . . , zn−k+1) = ∑
α∈π(n,k)

n!
α1!α2! · · ·

( z1

1!

)α1
( z2

2!

)α2
· · · ,

where π(n, k) denotes the set of multi-indices α ∈Nn−k+1
0 such that

α1 + α2 + · · · = k and α1 + 2α2 + 3α3 + · · · = n.

Note that Bn,k contains as many monomials as the number of partitions of [n] =
{1, . . . , n} into k parts. Thus, if x enumerates some class of building blocks (with xj
distinct blocks of type j), then the sequence Ya,b,c,d(x) counts the number of objects
that can be made from these building blocks by placing them (according to their type)
on a set of partitions induced by the parameters (a, b, c, d). Moreover, the term

1
n!

[ k−1

∏
j=1

(an + bk + cj + d)
]

Bn,k(1!x1, 2!x2, . . . )

gives the number of such objects made with exactly k blocks. For example, if the
induced partitions consist of interval blocks, then the set of resulting objects of length
n made with k such blocks is given by

k!
n! Bn,k(1!x1, 2!x2, . . . ). (2)
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This corresponds to (a, b, c, d) = (0, 1,−1, 1). The sum over k = 1, . . . , n then gives the
invert transform of x, see e.g. [1, 3, 6], and the quantity (2) may be interpreted as the
number of colored compositions of n with k parts, where part j comes in xj different
colors.

Another special case is the noncrossing partition transform, introduced by Beissinger
in [1] and systematically studied by Callan in [5]. It corresponds to (a, b, c, d) =
(1, 0,−1, 1), giving ∏k−1

j=1 (an + bk + cj + d) = n!
(n−k+1)! . In this case, (1) becomes

yn =
n

∑
k=1

1
(n−k+1)! Bn,k(1!x1, 2!x2, . . . ),

which counts the configurations obtained by placing the building blocks enumerated
by x on top of the noncrossing partitions of [n]. In particular, if x = 1 = (1, 1, . . . ),
then

yn =
n

∑
k=1

1
(n−k+1)! Bn,k(1!, 2!, . . . ) =

n

∑
k=1

1
n (

n
n−k)(

n
k−1) =

1
n+1 (

2n
n ).

Thus Y1,0,−1,1(1) is the sequence of Catalan numbers that enumerates noncrossing
partitions Dyck paths, rooted trees, and many others combinatorial objects.

The family Ya,b,c,d also includes several of the known transformations studied by Bern-
stein and Sloane in [3]. For example, exp, revert, and conv are instances of Bell and
can therefore be treated with the unifying approach provided by the partial Bell poly-
nomials.

We study Ya,b,c,d from the algebraic and combinatorial points of view. We give formu-
las for the inverse Y −1

a,b,c,d and provide equivalent forms of (1) in terms of generating
functions. These results are obtained using Lagrange inversion together with certain
interpolating properties of the partial Bell polynomials proved in [4].

We will end with some examples (focusing on rooted planar maps and certain classes
of permutations) that illustrate how Ya,b,c,d may be used to link the enumeration of
certain classes of combinatorial structures with the enumeration of building blocks
that serve as “primitive elements” within each class.

Main theorems

Theorem 1 (Inverse relations). Let x = (xn)n∈N, y = Ya,b,c,d(x), qn,k(t) = t
k−1
∏
j=1

(an +

dj + t).

(i) If c 6= 0, then

xn =
n

∑
k=1

(−1)k−1

n!

[
qn,k(b + c)− qn,k(b)

c

]
Bn,k(1!y1, 2!y2, . . . ).
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(ii) If c = 0, then

xn =
n

∑
k=1

(−1)k−1

n!
q′n,k(b)Bn,k(1!y1, 2!y2, . . . ),

where q′n,k denotes the derivative d
dt qn,k.

Theorem 2 (Generating functions). Let x = (xn)n∈N and y = (yn)n∈N be sequences such

that y = Ya,b,c,d(x). Let X(t) =
∞
∑

n=1
xntn and Y(t) =

∞
∑

n=1
yntn.

(i) If c 6= 0 and d 6= 0,

X
(

t
(
1 + dY(t)

)a/d
)
=

1
c

[
1−

(
1 + dY(t)

)−c/d
](

1 + dY(t)
)−b/d.

(ii) If c = 0 and d 6= 0,

X
(

t
(
1 + dY(t)

)a/d
)
= log

((
1 + dY(t)

)1/d
)(

1 + dY(t)
)−b/d.

(iii) If c 6= 0 and d = 0,

X
(

teaY(t)
)
=

1
c

[
1− e−cY(t)

]
e−bY(t).

(iv) If c = d = 0,

X
(

teaY(t)
)
= Y(t)e−bY(t).

Selected combinatorial applications

Rooted planar maps

In [11] Tutte studied the enumeration of rooted planar maps and established a link
to the enumeration of nonseparable rooted planar maps, which under the action of
Y2,0,−1,1 may be considered their prime elements.

Let an be the number of rooted planar maps with n edges and let bn be the number of
nonseparable rooted planar maps with n edges. Let A(t) and B(t) be the generating
functions for a = (an)n∈N [10, A000168] and b = (bn)n∈N [10, A000139], respectively.
As proved by Tutte (cf. [11, Equation 6.3]), these functions satisfy the functional equa-
tion

A(t) = B
(
t(1 + A(t))2),

which implies a = Y2,0,−1,1(b).
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Bicubic maps

Another example amenable to Bell transformations is given by the following connec-
tion between rooted bicubic planar maps and their subclass of 3-connected elements.
In [11] Tutte observed that “Each rooted bicubic map can be represented as a multiple
extension of a 3-connected bicubic core” and proved the functional equation

F(t) = G
(
t(1 + F(t))3), (3)

where F(t) = ∑ fntn enumerates the rooted bicubic maps of 2n vertices (cf. [10,
A000257]) and G(t) = ∑ gntn counts those maps that are 3-connected. This means
f = Y3,0,−1,1(g). In [11] Tutte proved that f = ( fn)n∈N is given by

fn =
3(2n− 1)!2n

(n− 1)!(n + 2)!
for n ≥ 1. (4)

This sequence also gives the number of indecomposable σ-avoiding permutations of
length n for any σ ∈ {1342, 2413, 2431, 3142, 3241, 4132, 4213}.

Indecomposable permutations

Let Sn be the set of permutations on [n], and let p denote the sequence of factorials
(n!)n∈N. The inverse of p under the invert transform Y −1

0,1,−1,1(p) is the sequence
A003319 in [10] that enumerates the class of indecomposable permutations on [n].
This reflects the fact that every permutation in Sn can be split into indecomposable
permutations of length less than or equal to n, so they play the role of building blocks
from which all permutations can be constructed. In fact, every permutation on [n]
may be represented as a composition of n whose parts of length j are labeled by
indecomposable permutations of length j.

Using this interpretation it is easy to see that, if a pattern σ is indecomposable, then
every permutation in Av(σ) can be split into σ-avoiding indecomposable permutations
(denoted by Avind(σ)). Thus, if aσ = (Avn(σ))n∈N and iσ = (Avind

n (σ))n∈N, then

iσ = Y −1
0,1,−1,1(aσ) (cf. [7, Lem. 3.1]).

For example, if σ ∈ {2413, 2431, 3142, 3241, 4132, 4213}, then Avind
n (σ) = fn like in (4),

and

Avn(σ) =
n

∑
k=1

k!
n!

Bn,k(1! f1, 2! f2, . . . ).

Also, since A001519 enumerates Av(σ, τ) for (σ, τ) ∈ {(321, 2341), (321, 3412), (321, 3142)},
we can use Y −1

0,1,−1,1 to obtain Avind
n (σ, τ) = 2n−1.

Corresponding formulas may be obtained for classes avoiding two patterns of length
4. For example, if (σ, τ) is any of the following pairs of permutations:

(4321, 4312), (4312, 4231), (4312, 4213), (4312, 3412), (4231, 4213),
(4213, 4132), (4213, 4123), (4213, 2413), (3142, 2413),
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it is known [8] that Avn(σ, τ) is the large Schröder number A006318(n− 1). As a conse-
quence, we have that Avind

n (σ, τ) is given by the little Schröder number A001003(n− 1).

The class Av(2413, 3412)

Bell transformations can be combined with the OEIS [10] to create flows of sequences
associated with a particular sequence of interest. This often leads to combinatorial
connections that can be verified through the functional equation satisfied by the gen-
erating functions.

Let us illustrate this strategy with the sequence A000257 (number of rooted bicubic
maps of 2n vertices, number of rooted Eulerian maps with n edges, or Avind

n (2413), for
instance). Using Bell transformations one can discover the following connections:

f = A000257

g = A298358 h = A069728

a = A165546

b = A022558

Y3,0,−1,1 Y2,0,−1,1

ϕ

Y0,1,−1,1

Rooted non-separable
Eulerian maps with
n edges

Rooted 3-connected
bicubic maps of 2n
vertices

Av(2413, 3412)

Av(2413)

where ϕ = Y1,1,−1,1 ◦ R and R ◦ (x1, x2, . . . ) = (1, x1, x2, . . . ). The identities f =
Y3,0,−1,1(g), f = Y2,0,−1,1(h), b = Y0,1,−1,1( f ) are consistent with the building block
approach, and therefore expected. However, the connection between A000257 and
A165546 is surprising.

First, since Y −1
1,1,−1,1 = Y−1,0,−1,−1, the conjectured identity f = ϕ(a) is equivalent to

R(a) = Y−1,0,−1,−1( f ). (5)

If A(t) is the generating function for the sequence a, then the right-shifted sequence
R(a) has generating function t(1 + A(t)). Hence (5) together with Corollary 2 give
the functional equation

1 + F
(
t(1− t(1 + A(t)))

)
=

1
1− t(1 + A(t))

.

Now, using F(t) = 1
32t2

(
− 1 + 12t− 24t2 + (1− 8t)3/2) one can verify the identity

16t2(1 + F(t))2 − (8t2 + 12t− 1)(1 + F(t)) + t2 + 11t− 1 = 0,

which leads to the functional equation

t4(1 + A(t))3 + (5t3 − 11t2)(1 + A(t))2 + (3t2 + 10t− 1)(1 + A(t))− 9t + 1 = 0.
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The validity of this equation was recently proved by Miner and Pantone [9]. In other
words, we do have f =

(
Y1,1,−1,1 ◦ R

)
(a) and as a consequence, we get the formulas

fn =
n

∑
k=1

(
n + k
k− 1

)
(k− 1)!

n!
Bn,k(1!, 2!a1, 3!a2, . . . ), and

an−1 =
n

∑
k=1

(
−n− 2
k− 1

)
(k− 1)!

n!
Bn,k(1! f1, 2! f2, . . . ) for n ≥ 2.
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Permutations Sorted by a Finite and an Infinite Stack in Series

Yoong Kuan Goh University of Technology Sydney

This talk is based on joint work with Murray Elder

The research interest in pattern avoiding permutations is inspired by Donald Knuth’s
work in stack-sorting. According to Knuth, a permutation can be sorted by passing
through a single infinite stack if and only if it avoids a sub-permutation pattern 231
[3]. Murphy extended Knuth’s research by using two infinite stacks in series and
found out that the basis for generated permutations is infinite [4] but Elder proved
that the basis is finite when one of the stack is limited to depth two and the number
of basis is 20 permutations [1]. An example of sorting permutation using two stack in
series is in Figure 1

We prove that the set of permutations sorted by a stack of depth t ≥ 3 and an infinite
stack in series has infinite basis, by constructing an infinite antichain of unsortable
permutations [2]. This answers an open question on identifying the point at which,
in a sorting process with two stacks in series, the basis changes from finite to infinite.

inputoutput

R

L

a1a2 . . . an

Figure 1: A stack R of depth t and an infinite stack L in series

A simple lemma then implies the result for depth 4 or more. A computer search by
the authors has yielded 8194 basis permutations of lengths up to 13 (see Table 1); basis
permutations are listed at

https://github.com/gohyoongkuan/stackSorting-3.

The antichain used to prove our theorem was found by examining this data and
looking for patterns that could be arbitrarily extended.

As a by product, we also can find an explicit antichain for in the basis of S(t, ∞).
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Table 1: Number of basis elements for S(3, ∞) of length up to 13

Permutation length Number of sortable permutations Number of basis elements

5 120 0
6 711 9
7 4700 83
8 33039 169
9 239800 345
10 1769019 638
11 13160748 1069
12 98371244 1980
13 737463276 3901
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Shuffle-Compatibility of the Exterior Peak Set

Darij Grinberg University of Minnesota, Twin Cities

In [1], Ira Gessel and Yan Zhuang have coined the concept of shuffle-compatibility: a
property shared by many (but not all) known and less-known permutation statistics.
In this abstract, which is an outline of the paper-in-progress [3], we shall apply this
concept to the exterior peak set statistic, proving a conjecture of Gessel and Zhuang,
and furthermore study variants of this concept.

Definitions and the main theorem

We let N = {0, 1, 2, 3, . . .}. For each n ∈ Z, we set [n] = {1, 2, . . . , n}.

If n ∈N, then an n-permutation shall mean an n-tuple of distinct positive integers. For
example, (3, 6, 4) and (9, 1, 2) are 3-permutations, but (2, 1, 2) is not.

A permutation means an n-permutation for some n ∈ N. This concept of permuta-
tion (inherited from [1]) is nonstandard; however, our later definition of permutation
statistics will ensure that the extra liberty to use arbitrary positive integers as entries
does not significantly impact the results.

If π is an n-permutation for some n ∈N, then we refer to n as the size of π and denote
it by |π|. Furthermore, we say that π is nonempty if n > 0, and we use the notation πi
for the i-th entry of π.

If n ∈ N, then two n-permutations α and β are said to be order-equivalent if every
i, j ∈ [n] satisfy the logical equivalence (α (i) < α (j))⇐⇒ (β (i) < β (j)).

A permutation statistic is a map st from the set of all permutations to an arbitrary set
that has the following property: Whenever α and β are two order-equivalent permu-
tations, we have st (α) = st (β). Thus, a permutation statistic can alternatively be
viewed as a statistic defined on the set of all permutations in the usual sense (i.e., all
permutations of the sets [n] for n ∈N), because each permutation (in the sense above)
is order-equivalent to a unique permutation of its size (in the usual sense).

Examples of permutation statistics are Des (sending each permutation π to its set
Des π of descents), maj (sending each permutation to its major index) and inv (send-
ing each permutation to its number of inversions). A more elaborate example is the
peak set statistic Pk; it sends each n-permutation π to the set Pk π of all peaks of π,
which are the elements i ∈ {2, 3, . . . , n− 1} satisfying πi−1 < πi > πi+1. This statistic
has been studied by Aguiar, Nyman, Petersen and others. Two variants are the left
peak statistic Lpk (which is defined just as Pk, but i now ranges over {1, 2, . . . , n− 1}
instead of {2, 3, . . . , n− 1}, and π0 is understood to be 0) and the right peak statistic
Rpk (defined similarly). We refer to [1] or [3] for precise definitions.
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The permutation statistic that we shall mainly focus on is the exterior peak set Epk. It
sends each n-permutation π to the set Epk π of all exterior peaks of π, which are the
elements i ∈ [n] satisfying πi−1 < πi > πi+1, where both π0 and πn+1 are understood
to be 0. Equivalently, Epk π is the number of appearances of the consecutive patterns
132 and 231 in the word 0π0 (that is, π flanked by zeroes on both sides). For example,

Epk (1, 4, 3, 2, 9, 8) = {2, 5} ; Epk (3, 1, 4, 2) = {1, 3} ;

Epk (1, 2, 3, 4) = {4} .

Two permutations π and σ are said to be disjoint if no number appears in both π and
σ.

If π and σ are disjoint permutations with sizes m = |π| and n = |σ|, then a shuffle of π

and σ means an (m + n)-permutation in which both π and σ appear as subsequences.
For instance, the shuffles of the two disjoint permutations (3, 1) and (2, 6) are

(3, 1, 2, 6) , (3, 2, 1, 6) , (3, 2, 6, 1) ,

(2, 3, 1, 6) , (2, 3, 6, 1) , (2, 6, 3, 1) .

This naive definition of a shuffle does not attempt to deal with equal numbers, but
suffices for what we shall do in the following.

A permutation statistic st is said to be shuffle-compatible if and only if it has the follow-
ing property: For any two disjoint permutations π and σ, the multiset

{st (τ) | τ is a shuffle of π and σ}

depends only on st (π), st (σ), |π| and |σ|.

Our main theorem – conjectured by Gessel and Zhuang in [1] – is:

Theorem 1. The permutation statistic Epk is shuffle-compatible.

This joins the ranks of a series of similar theorems about other statistics proven in [1].
In particular, [1] showed that the statistics Des (descent set), des (number of descents),
maj (major index), Pk (peak set), Lpk (left peak set), Rpk (right peak set) and sev-
eral others are shuffle-compatible, whereas the statistics inv (number of inversions),
des+maj (the sum of the number of descents and the major index) and various oth-
ers are not. Shuffle-compatibility is not equivalent to defining a subalgebra of descent
algebras (for example, Epk does not define such a subalgebra).

The proof of Theorem 1 relies on a generalization of Stanley’s concept of P-partitions
and its closest relatives (Stembridge’s enriched P-partitions and Petersen’s left en-
riched P-partitions). We refer to [3] for details.

Left and right shuffles

We can refine the concept of shuffles. Namely, if π and σ are two disjoint nonempty
permutations, then a shuffle of π and σ is called a left shuffle (of π and σ) if it begins
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with π1; otherwise it is a right shuffle. We can now define two finer versions of shuffle-
compatibility:

• A permutation statistic st is said to be left-shuffle-compatible if for any two disjoint
nonempty permutations π and σ having the property that

the first entry of π is greater than the first entry of σ, (1)

the multiset {st (τ) | τ is a left shuffle of π and σ} depends only on st (π), st (σ),
|π| and |σ|.

• A permutation statistic st is said to be right-shuffle-compatible if for any two
disjoint nonempty permutations π and σ having the property (1), the multi-
set {st (τ) | τ is a right shuffle of π and σ} depends only on st (π), st (σ), |π|
and |σ|.

We now claim:

Theorem 2. The permutation statistic Epk is left-shuffle-compatible and right-shuffle-compatible.

Our proof of Theorem 2 (again, for details see [3]) involves a detour through QSym,
the ring of quasisymmetric functions. It uses four additional binary operations on
QSym, introduced in [2].

We also prove that the statistics Des (descent set), des (descent number) and Lpk (left
peak set) are left-shuffle-compatible and right-shuffle-compatible, but the statistics
Rpk (right peak set) and maj (major index) are not.

Descent statistics and the QSym connection

The concept of shuffle-compatibility is closely related to the Q-algebra QSym of qua-
sisymmetric functions, as Gessel and Zhuang already observed in [1]. Let us outline
the connection. (We refer to [5, Section 7.19] or [4, Chapter 5] for the definition of
QSym.)

If n ∈ N, then each subset I = {i1 < i2 < · · · < ik} of [n− 1] determines a composi-
tion of n (namely, the composition (i1 − i0, i2 − i1, . . . , ik+1 − ik), where we set i0 = 0
and ik+1 = n). This latter composition is denoted by Comp I. This defines a bijection
Comp from the set of all subsets of [n− 1] to the set of all compositions of n. When
this map is applied to the descent set Des π of an n-permutation π, we denote the
resulting composition Comp (Des π) by Comp π.

A permutation statistic st is said to be a descent statistic if and only if st π (for π a
permutation) depends only on Comp π. In other words, st is a descent statistic if
and only if every two permutations π and σ satisfying Comp π = Comp σ satisfy
st π = st σ.
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All shuffle-compatible permutation statistics currently known (including Des, des,
maj, Lpk, Rpk and Epk) are descent statistics. For example, Epk is a descent statistic,
since every positive integer n and every n-permutation π satisfy Epk π = {i ∈ Des π ∪ {n} | i− 1 /∈ Des π}
(and both Des π and n can be recovered from Comp π).

For any descent statistic st, we define the kernel Kst of st to be the Q-vector subspace of
QSym spanned by all elements of the form FComp π − FComp σ, where π and σ are two
permutations of the same size satisfying st π = st σ, and where F stands for Gessel’s
fundamental basis of QSym (so Fα is what is denoted by Lα in [5, Proposition 7.19.1]
or [4, Definition 5.2.4]). Then, a descent statistic st is shuffle-compatible if and only if
its kernel Kst is an ideal of QSym. (This is explicitly stated in [3], but the idea goes
back to [1].)

Thus, shuffle-compatible descent statistics correspond to a certain kind of ideals of
QSym. The quotients of QSym by these ideals are called shuffle algebras in [1].

In [3], we find two spanning sets for the kernel KEpk of Epk. One is in terms of the
fundamental basis; the other in terms of the monomial basis. Similar descriptions can
probably be found for kernels of other prominent descent statistics.

The quasisymmetric point of view also illuminates left-shuffle-compatibility: We show
that a descent statistic st is left-shuffle-compatible and right-shuffle-compatible if and
only if its kernel Kst is an ideal of the dendriform algebra QSym, which relies on the
dendriform operations introduced in [2]. This fact, along with certain identities for
these dendriform operations, is key to the proof of Theorem 2.

While the above results (particularly Theorem 1) can be viewed as a conclusion of [1],
several questions arise from the work, and much remains to be done.
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The Prolific Proportion of Permutations

Cheyne Homberger University of Maryland, Baltimore County

This talk is based on joint work with Simon R. Blackburn, Peter Winkler

The breadth of an n-permutation π is the minimum value of the pairwise manhattan
distance between entries. In this talk we present several related results on permuta-
tion breadth and connections to large pattern containment. In particular we find the
probability that a large random permutation has a given breadth, and calculate the
expected breadth of a random permutation.

Background

Definition 1. The breadth of a permutation π, denoted br(π), is defined as

br(π) := min
i 6=j
{|i− j|+ |π(i)− π(j)|}.

Let π be a permutation of length n. For 1 ≤ k ≤ n, let ∆k(π) be the set of patterns of
length n− k. That is,

∆k(π) = {σ ∈ Sn−k : σ ≺ π}.

It follows that |∆k(π)| ≤ (n
k), and we say that a permutation π is k-prolific if we

have |∆k(π)| = (n
k). That is, π is k-prolific if all the possible k-deletions result in a

unique pattern. For example, the permutation 123 · · · n is not 1-prolific, since delet-
ing any entry produces the same pattern. If π = 3142, then π is 1-prolific since
∆1(π) = {132, 213, 231, 312}, but not 2-prolific since ∆2(π) = {12, 21}. See Figure 1
for examples of minimal 5- and 6-prolific permutations.

Breadth is connected to prolificity through the following theorem:

Theorem 2 ([1]). A permutation is k-prolific if and only if it has breadth of at least k + 2.
Additionally, k-prolific n-permutations exist for every n ≥ dk2/2e+ 2k + 1.

For a permutation π, we say that the pair i, j is a k-close pair if |i− j|+ |π(i)− π(j)| =
k. Previously, Wolfowitz studied the distribution of 2-close pairs within a random
permutation π: entries that are adjacent both in position and value. In particular, he
proved the following theorem:

Theorem 3 (Wolfowitz [3]). For a large random permutation π, the number of 2-close pairs
is asymptotically Poisson distributed with mean 2. It follows that the probability that a random
permutation has no 2-close pairs is e−2.

Corollary 4. The probability that a random permutation has breadth strictly greater than 2
(and hence is 1-prolific) is e−2.
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Figure 1: The plots of a minimal 5-prolific permutation of length 24 and a minimal
6-prolific permutation of length 31, represented as a pairs of interlocking grids of
entries.

Agenda

In this talk, we present several probabilistic results related to the breadth of random
permutations. Specifically, for fixed k, we examine the limiting probability that a
(uniformly) random permutation is k-prolific by approximating the distribution of
(k − 1)-close pairs of entries. Then, we calculate the expected breadth of a large
random permutation using probabilistic techniques and the Bonferroni inequalities.

Specifically, we present the following theorems:

Theorem 5 ([2]). The number X of (k + 1)-close pairs in a large random permutation is
Poisson-distributed with mean k2 + k. That is,

P [X = m] = e−k2−k (k
2 + k)m

m!
.

In particular, the probability that a permutation has breadth at least k + 2 (i.e., is k-prolific) is
e−k2−k.

Theorem 6 ([2]). The expected breadth of a large random permutation π is

E [br(π)] = 1 +
∞

∑
k=0

e−k2−k ≈ 2.13782018.

We prove Theorem 5 by investigating the distribution of (k − 1)-close pairs in a
random permutation. Using a moment method, we show that this distribution is
asymptotically Poisson, which allows us to estimate the number of permutations with
breadth at least k.
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However, knowing the distribution of k-close pairs for fixed k is insufficient to prove
Theorem 6. For that, we need a series of carefully constructed bounds to show con-
vergence, and we measure a closely related statistic: the minimum jump (denoted mj)
of a permutation:

mj(π) = min
i
{|π(i + 1)− π(i)|},

and calculate the expected minimum jump of a random permutation to be

E [mj(π)] =
n

∑
k=0

e−2k ≈ 1.15651764.
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Enumerative and Algebraic Combinatorics of OEIS A071356

Chetak Hossain North Carolina State University

In [4, 6], the study of pattern avoiding inversion sequences was initiated. In [7],
Martinez and Savage ask if In(ei > ej ≤ ek) is counted by OEIS A071356. We provide a
generating function argument that this is indeed the case. The sequence OEIS A071356
is known to count certain underdiagonal lattice paths [1]. We find an explicit bijection
between IR

n (ei ≥ ej < ek) and the underdiagonal lattice paths.

Rephrasing the results of [3] provides a surjective map τ from Sn to all Dyck paths.
Moreover, the fibers of τ are intervals in the weak order and coincide with a lattice
congruence on Sn. When τ is restricted to the top elements of the interval, we get a bi-
jection between Sn(132) and Dyck paths. In [5], we show that Sn(2143, 3142, 1423, 1432)
is counted by OEIS A071356. Additionally, we find a surjective map ρ from Sn to the
underdiagonal lattice paths whose fibers are intervals in the weak order and coin-
cide with a lattice congruence on Sn. When ρ is restricted to the top elements of the
interval, we get a bijection between Sn(2143, 3142, 1423, 1432) and the underdiagonal
lattice paths.

In the next section, we provide a different surjective map ω from Sn to the underdiag-
onal lattice paths. We prove that the fibers of ω are intervals in the weak order. While
the fibers of ω do not coincide with a lattice congruence on the weak order, they do
refine the fibers of τ. In a later section, we show that the Lehmer codes of the top
elements of the intervals are precisely the elements of IR

n (ei ≥ ej < ek). So ω restricted
to the top elements is the desired bijection.

The map ω : Sn → RSPn

Let Sn be the symmetric group consisting of permutations of [n]. Throughout this
section, we assume σ ∈ Sn is written in one-line notation as σ = σ1σ2 . . . σn.

Definition 1. We call a pair (σi, σj) an inversion of σ if i < j and σi > σj .

Definition 2. A non-Dyck inversion of a permutation w ∈ Sn is an inversion (σi, σj)
such that there exists some σk where i < j < k and σj < σk < σi. A Dyck inversion of a
permutation σ ∈ Sn is an inversion (σi, σj) that is not a non-Dyck inversion.

Definition 3. Let Dn be the set of Dyck paths, that is, underdiagonal paths in a n× n
box that use north and east steps of length 1. Let SPn be the set of Schröder paths,
that is underdiagonal paths in a n× n box consisting of north (length 1), east (length
1), and diagonal northeast (length

√
2) steps. Let RSPn ⊆ SPn be the set of restricted

Schröder paths, where there are no diagonal steps on the main diagonal and every
diagonal step is immediately followed by an east step.

Definition 4. Let the height of an east step of a Dyck path p ∈ Dn be defined as its
distance from the southern boundary of the n× n box.
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Definition 5. Let τ : Sn → Dn be the following map. Suppose σ ∈ Sn. We begin with
the n× n square. The square can be considered a grid with n columns. If we consider
the n-tuple (d1, · · · , dn), where

di = |{j | (σi, σj) is a Dyck inversion}|

we place a di× 1 rectangle into the ith column so that the upper left corner aligns with
the point (i − 1, i − 1). Note that by construction, all boxes lie below the diagonal.
Equivalently, τ(σ) can be considered the unique Dyck path where the east step in the
ith column occurs at height i− di + 1. The fact that the resulting lower boundary of
the boxes is a Dyck path is proven in [5].

Remark 6. The map τ is inspired by [2]. In fact, when τ is restricted to the bottom
elements we recover the main bijection of [2].

Definition 7. Fix σ ∈ Sn and suppose σi = σj − 1 and σk = σj + 1. If 1 < j < n , we
define σj to be NEE-positive if i < j and k < j. If 1 < j < n , we define σj to be atomic
if i > j and k > j. Additionally, σj = 1 is atomic if k > j and σj = n is atomic if i > j.

Definition 8. Each Dyck path has a natural edge labeling as follows. We label the
unique east edge in the ith column with i. For each east edge there is a corresponding
unique north edge. It is found by traveling in the northeast direction from the center
of the east edge until hitting the path again. The point at which we hit the path again
is the center of the corresponding north edge. We label the north edge with the same
label as its corresponding east edge.

Definition 9. Fix p ∈ Dn, and let j be the label of a fixed east step. If 1 < j < n , we
define j to be NEE-positive if the east step labeled with j + 1 has the same height as
the east step labeled with j and the east step labeled with j− 1 has a smaller height.
If 1 < j < n, we define j to be atomic if the east step labeled with j− 1 has the same
height as the east step labeled with j and the east step labeled with j + 1 has a larger
height. Additionally, 1 is atomic if the east step labeled with 2 has nonzero height and
n is atomic if n− 1 has the same height as n. We will often refer to atomic edge labels
as atoms.

Proposition 10. Fix σ ∈ Sn. If σj is NEE-positive or atomic, then the east step labeled
with σj in τ(σ) will be NEE-positive or atomic respectively. Fix p ∈ Dn. If the east step
labeled with i in p is NEE-positive or atomic, then for all σ such that τ(σ) = p, i will be
NEE-positive or atomic respectively.

Proposition 11. Fix σ ∈ Sn. Let bi and bi+1 be atomic edge labels in τ(σ) such that bi < bi+1
and there is no atomic bj with bi < bj < bi+1. Then there exists exactly one label ai+1 in
between bi and bi+1 that is NEE-positive.

Corollary 12. Let σ ∈ Sn be fixed. If σ has k NEE-positive instances, then it has k + 1
atoms. Moreover, if we arrange the NEE-positive and atoms in increasing order as a tuple,
they will alternate. Let this tuple be (b0, a1, b1, a2 . . . , bk−1, ak, bk).
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Definition 13. For fixed σ ∈ Sn. Let {b0, b1, · · · , bk} be the atoms of τ(σ) listed in in-
creasing order. We define the partner atom function γσ : {b0, b1, . . . , bk−1} → {b1, . . . , bk}
as follows. If γσ(bi) = bj, we refer to bj as the partner atom of bi. If σ is clear from the
context, we will omit the σ subscript. Let left(a, b) be whichever of a and b appears
first in σ when interpreting the one-line notation of σ as a linear extension on [n]. γσ

is defined recursively as follows. Our base case is γ(bk−1) = bk. For 0 ≤ m < k− 1,
γ(bm) = left(bm+1, γ(bm+1))

Definition 14. To each permutation σ ∈ Sn with k NEE-positive instances, we can
associate a certain 0 – 1 vector of length k. We define the map β : Sn → {0, 1}k as
follows. For 0 ≤ j ≤ k− 1, the (j + 1)th entry of β(σ) is 1 if left(bj, γ(bj)) = γ(bj). The
(j + 1)th entry of β(σ) is 0 if left(bj, γ(bj)) = bj.

Definition 15. Let ω : Sn → RSPn be the following map. Let σ ∈ Sn. Start with the
Dyck path τ(σ). If the ith entry of β(σ) is nonzero, add a triangle (translation of the
convex hull of (0, 0), (0, 1), (1, 1) ) in the ath

i column so that the edge (0, 1)-(1, 1) agrees
with the bottom edge of the lowest box in the ath

i column (where ai is the label of the
well-defined NEE-positive label as in Corollary 12 ). The resulting lower boundary of
the shape will be a restricted Schröder path with the desired properties.

Definition 16. Fix σ ∈ Sn. Suppose that σiσjσkσm is an instance of a 1243 pattern. We
call such a pattern left inversion dense or LID if

|{σu | i < u, σi > σu}| >
∣∣{σu | j < u, σj > σu}

∣∣ .

Definition 17. Fix σ ∈ Sn. Suppose that σiσjσkσm is an instance of a LID 1243 pattern.
We say that such a pattern is partner atom neutral or PAN if either

• at least one of σj and σk is not atomic

• both σj and σk are atomic and γ(σj) 6= σk

Proposition 18. Let x l y in the weak order. Then ω(x) = ω(y) if and only if y is obtained
from x by one of the following moves.

• A 2143 to 2413 move

• A 3142 to 3412 move

• A 4132 to 4312 move

• A 1243 to 1423 move where 1243 is PAN in x and 1423 is PAN in y

Theorem 19. The fibers of ω are intervals.

Corollary 20. Fix a fiber of ω. The top element is a permutation that avoids 2143, 3142, 4132
patterns as well as PAN 1243 patterns. The bottom element is a permutation that avoids
2413, 3412, 4312 patterns as well as PAN 1423 patterns.

Proposition 21. ω is surjective.
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Definition 22. Let MAvn = Sn(4132, 3142, 2143, 1243LID) be the set of permutations
avoiding the normal vincular patterns 4132, 3142, 2143 and LID 1243 patterns.

Definition 23. Let Avn = Sn(4132, 3142, 2143, 1243PAN) be the set of permutations
avoiding the normal vincular patterns 4132, 3142, 2143 and PAN 1243 patterns.

Lemma 24. MAvn ⊆ Avn.

Theorem 25. |Sn(2143, 3142, 1423, 1432)| = |RSPn|

Theorem 26. |Sn(2143, 3142, 1423, 1432)| = |Avn|

Corollary 27. |Avn| = |RSPn|

Corollary 28. ω restricts to a bijection from Avn to RSPn.

Avoiders in Inversion Sequences

We consider the family of avoiders on inversion sequences known as class 1064 in [7].

Definition 29. We recall from [7] that elements of In(ei > ej ≤ ek) take the following
form:

e1 ≤ · · · ≤ et > et+1 > · · · > en

for some t such that 1 < t ≤ n. Let t be called the peak of such an inversion sequence.

In [7], it is noted that true unimodal inversion sequences (class 1265 in [7]) are in
bijection with Sn(2143, 3142, 4132) via Lehmer codes. In this spirit, we will find it
useful to consider IR

n (ei ≥ ej < ek), the reversed inversion sequences of class 1064. Let
L−1 be the inverse of the map that takes permutations to their Lehmer codes.

Proposition 30. L−1(IR
n (ei ≥ ej < ek)) ⊆ MAvn

Proof. Fix e = (e1, · · · , en) ∈ IR
n (ei ≥ ej < ek) and let σ ∈ Sn be the unique permutation

such that the Lehmer code of σ is e. Assume for the sake of contradiction that σ has
one of the forbidden four subpatterns of MAvn. Suppose the forbidden subpattern
is σi − σjσk − σm. We note that ei ≥ ej for the normal vincular patterns (follows from
σi > σj) and by definition in the LID pattern. Since σj and σk form an ascent, we
find that ej ≤ ek and the existence of σm shows that ej < ek. Thus, we would have an
instance of the pattern ei ≥ ej < ek, which contradicts e ∈ IR

n (ei ≥ ej < ek). This gives
the desired result.

Definition 31. Let In,t ⊆ In(ei > ej ≤ ek) be the avoiding inversion sequences of length
n with peak t. Let Cs = {(e1 ≤ · · · ≤ es) ∈Ns | ei ≤ i− 1}. Let As,k = {(es+1 > es+2 >
· · · > es+k) ∈Nk | es+1 ≤ s}.

It is shown in [7], that |Cs| = cs, the sth Catalan number.
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Theorem 32. The generating function of IR
n (ei ≥ ej < ek) is

2x + 1−
√

1− 4x− 4x2

4x
.

Proof. There exists a surjective two-to-one map α :
∞⋃

s=1

s+1⋃
k=0

Cs × As,k → Is+k for s ≥ 1.

The generating function for twice the codomain is equal to the generating function
for the domain. After adjusting the initial terms properly, this yields:

∞

∑
n=0

2anxn = 2 + x +
∞

∑
s=1

csxs
[(

s + 1
0

)
x0 +

(
s + 1

1

)
x1 + · · ·+

(
s + 1
s + 1

)
xs+1

]

2
∞

∑
n=0

anxn = 2 + x +
∞

∑
s=1

csxs(1 + x)s+1 = 2 + x + (1 + x)
∞

∑
s=1

cs[x(1 + x)]s

We recall that the Catalan numbers have generating function
∞

∑
t=0

ctyt =
1−

√
1− 4y

2y
.

Using the Catalan generating function for y = x(1 + x), and after a routine computa-
tion, we find the desired generating function:

∞

∑
t=0

atxt =
2x + 1−

√
1− 4x(x + 1)
4x

Theorem 33. The generating function of RSPn is

2x + 1−
√

1− 4x− 4x2

4x
.

Corollary 34. Avn = L−1(IR
n (ei ≥ ej < ek))

Proof. We note that Avn ⊇ L−1(IR
n (ei ≥ ej < ek)) by Proposition 30 and Lemma 24.

By Theorem 32, Corollary 27, and Theorem 33, the two sets have the same generating
function hence the same sizes so are equal.

Corollary 35. The map ω restricts to a bijection between L−1(IR
n (ei ≥ ej < ek)) andRSPn.

Proof. This follows from Theorem 19, Corollary 20, and Corollary 34.
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Connecting Descent and Peak Polynomials

Ezgi Kantarci Oğuz University of Southern California

Introduction

Denote by Sn the symmetric group of permutations σ = σ1σ2 · · · σn of [n] = {1, 2, . . . , n}
written in one-line notation. We will draw the graph of σ by plotting points (i, σi) and
connecting consecutive points.

We define the descent set of σ as follows:

Des(σ) = {i | σi > σi+1} ⊂ [n− 1].

Note that the descents mark the beginnings of the intervals where the graph is de-
creasing, as seen in Figure 1 below.

2
4 3

1

5 6 7 8

Figure 1: The graph of σ = 34215678 with descents marked in blue.

For a given set S and n > max(S), we let D(S, n) be the set of all permutations in Sn
with descent set S, and put d(S, n) = |D(S, n)|. In 1915, it was shown by MacMahon
[5] that this is a polynomial in n. More recently, Diaz-Lopez et al. [3] proved this
polynomial expands into the binomial basis around n− m, where m = max(S), and
gave a combinatorial interpretation for the coefficients. Using the notation σ|i =
{σ1, σ2, . . . , σi}, we give a version of their result slightly altered to include the case
m > max(S) as follows:

Theorem 1 ([3]). For any finite set of positive integers S with max(S) ≤ m we have:

d(S, n) = a0(S)
(

n−m
0

)
+ a1(S)

(
n−m

1

)
+ · · ·+ am(S)

(
n−m

m

)
, (1)

where the constant ak(S) is the number of σ ∈ D(S, 2m) such that:

σ|m ∩ [m + 1, 2m] = [m + 1, m + k].

The underlying idea is quite elegant and will be useful to show a similar result for
peak polynomials. Simply put, if σ ∈ D(S, n) has {σ1, σ2, . . . , σm} ∩ [m + 1, n] = A for
some k element set A, and B is any other k element subset of [m + 1, n], then exchang-
ing elements of A and B while preserving the orders gives another permutation with
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descent set S. Therefore, for each k, it is enough to count for the simplest k-element
subset of [m + 1, n] and multiply with (n−m

k ).

For example, there are 3 elements in D({2, 3}, n) satisfying σ|m∩ [5, 8] = ∅ : 14325678, 24315678, 34215678.
So we have a0({2, 3}) = 3 for m = 4. Calculating the other coefficients similarly, we
obtain:

d({2, 3}, n) = 3
(

n− 4
0

)
+ 8
(

n− 4
1

)
+ 7
(

n− 4
2

)
+ 2
(

n− 4
3

)
+ 0
(

n− 4
4

)
. (2)

Another well studied permutation statistic is given by peak point. Here we define the
peak points and their counterpart valley points of the partition to be the points higher
and lower than their neighbors respectively:

Peak(σ) = {σ | σi > σi+1, σi−1} ⊂ [n− 1]/{1},

Valley(σ) = {σ | σi < σi+1, σi−1} ⊂ [n− 1]/{1}.

The example σ = 34215678 from Figure 1 has Peak(σ) = {2} and Valley(σ) = {4}.
We also set Spike(σ) = Peak(σ) ∪ Valley(σ) to be the set of all extremal points that
are not corner points.

For a given set I and n > max(I), we let P(I, n) be the set of permutations in Sn with
peak set I, and set p(I, n) = 2−n+|I|+1|P(I, n)|. Note that peaks are more restrictive in
the sense that p(I, n) = 0 if I contains 1 or any consecutive entries. For the rest of this
work, we will focus our attention to admissible peak sets I: I ⊂ [n− 1]/{1} such that
i ∈ I ⇒ i + 1 /∈ I.

In [1] Billey, Burzdy and Sagan proved that p(I, n) is a polynomial in n, and conjec-
tured that the coefficients of this polynomial in a binomial basis centered at max(I)
are non-negative. Their conjecture was proved in 2017 by Diaz-Lopez et al. [2] using
the recursion of peaks, without describing the actual coefficients.

In this work, we tie the theory of peak and descent polynomials together by giving
a binary expansion of d(S, n) in terms of peak polynomials. We use this expansion
to give a description of the peak polynomial coefficients analogous to the one in
Theorem 1. In the next section, we extend our notions of descents and peaks to
Bn, the set of marked permutations of n with 2nn! elements. The added exponent
of 2 cancels out with the 2−n+|I|+1 from the peak polynomial definition, giving us a
way to expand descent polynomials in terms of peak polynomials. In a later section,
we define involutions on permutations that flip the descents on an initial section
and we use them to partition permutations with a given descent set to calculate the
coefficients for the peak polynomial.
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Descents and Peaks of Marked Permutations

We start our section by tweaking our notation a little bit to express our formulas
easier. Note that the peaks and valleys of a permutation only depend on its descent
set. In fact for any S ∈ [n− 1], we can talk about the peaks and valleys of S:

Peak(S) = {1 < i ≤ n− 1 | i ∈ S, i− 1 /∈ S},

Valley(S) = {1 < i ≤ n− 1 | i /∈ S, i− 1 ∈ S}.

Note that with this notation, Peak(σ) = Peak(Des(σ)) and Valley(σ) = Valley(Des(σ))
as expected. We also set Spike(S) := Peak(S) ∪Valley(S).

Denote by Bn the set of signed permutations:

Bn := {ρ = ρ1ρ2 . . . ρn | ∀i ≤ n∃k : ρk = i or ρk = −i}.

Note that the definitions of descent, peak, spike and valley naturally extend to signed
permutations by saying i is a descent of ρ if ρi > ρi+1.

Lemma 2 ([4]). Let σ ∈ Sn have Peak(σ) = I. Denote by Mark(σ) the 2n element subset
of Bn that give σ when marks are erased. Then, for all ρ ∈ Mark(σ), Spike(ρ) ⊃
I. Conversely, for any S ⊂ [n − 1] satisfying Spike(S) ⊃ I, there are exactly 2|I|+1

elements in Mark(σ) with descent set equal to S.

Theorem 3. We have d(S, n) = ∑
I⊂Spike(S)

p(I, n).

For example:

• d(∅, n) = p(∅, n) = 1.

• d({1}, n) = p({2}, n) + p(∅, n).

• For 1 < k < n, d({k}, n) = p({k}, n) + p({k + 1}, n) + p(∅, n).

• d({k, k + 1, . . . , k + j}, n) = p({k, k + j + 1}, n) + p({k}, n) + p({k + j + 1}, n) +
p(∅, n).

For any set I ∈ [n]/{1}, we will let SI denote the unique subset of [n]/{n} satisfying
Spike(SI) = I, constructed by alternating the elements of I to be peaks and valleys
such that the rightmost one is not a peak. For example, for I = {2, 4} we have
SI = {2, 3}: the descent set with a peak at 2 and a valley at 4.

Corollary 4. For any admissible set I, p(I, n) = ∑
J⊂I

(−1)|I|−|J|d(SJ , n).

If we consider our running example I = {2, 4}, we get the following formulas from
Theorem 3 and Corollary 4 respectively:

d({2, 3}, n) = p({2, 4}, n) + p({2}, n) + p({4}, n) + p(∅, n), (3)

p({2, 4}, n) = d({2, 3}, n)− d({1}, n)− d({1, 2, 3}, n) + d(∅, n). (4)
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A combinatorial expression for peak coefficients

We start with defining an operation on permutations that ’flips’ the orders of some
initial coordinates.

Definition 5. Let σ ∈ Sn. Let i ≤ n, and σ|i = {a1 < a2 < · · · < ai}. We define the
involution fli as follows:

fli(σ)j =

{
ai−k+1 j ≤ i, σj = ak

σj j > i.

2
4 3 1

5 6 7 8 fl2

−→ 4 2 3 1
5 6 7 8

y fl4
y fl4

3 1 2
4 5 6 7 8 fl2

−→
1

3
2

4 5 6 7 8

Figure 2: 2 and 4 flips of σ = 21478536 admits a 6-flip.

Remark 6. The involution fli satisfies the following:

• fli(σ)|i = σ|i.

• For k < i, k is a descent of fli(σ) iff it is not a descent of σ.

• For k > i, k is a descent of fli(σ) iff it is a descent of σ.

• fli exchanges all the peaks less than i − 1 with valleys, and all the valleys less
than i− 1 with peaks.

In Figure 2, we see an instance of operations fl2 and fl4 commuting. This in fact is true
in general.

Proposition 7. For all i, j, fli and flj commute.

For any admissible set I = {i1, i2, . . . , ik}, we put flI := fli1 ◦ fli2 ◦ · · · ◦ flik . This opera-
tion is well-defined by the proposition above.

We say σ admits an i-flip if i ∈ Spike(σ) and Spike(fli(σ)) = Spike(σ)/{i}. Visually,
this means that fli straightens out the peak or valley point at i. For example, 21478536
from Figure 2 admits a 4-flip, but not a 2-flip.

Corollary 8. For all i, j such that |i− j| > 1, σ admits an i-flip if and only if flj(σ) admits
an i-flip.
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fl2 fl4

14325678 7 3

24315678 7 3

34215678 3 3

fl2 fl4

15324678 7 3

15423678 7 7

25314678 7 7

25413678 7 7

35214678 3 7

35412678 7 7

45213678 3 7

45312678 3 7

k = 0 k = 1

fl2 fl4

16523478 7 7

26513478 7 7

36512478 7 7

46512378 7 7

56213478 3 7

56312478 3 7

56412378 3 7

fl2 fl4

57612348 7 7

675123478 3 7

k = 2 k = 3

Table 1: The elements σ ∈ D({2, 3}, 8) satisfying σ|4 ∩ [5, 8] = [5, 4 + k].

Lemma 9. For any admissible set I and any J ⊂ I, the operation flJ gives a bijection
between elements of D(SI/J , n) and elements of D(SI , n) that admit a j-flip for all
j ∈ J. In particular, for any m ≥ max(I) we have:

σ|m ∩ [m + 1, 2m] = [m + 1, m + k]⇐⇒ flJ(σ)|m ∩ [m + 1, 2m] = [m + 1, m + k].

Theorem 10. For any admissible set of I with max(I) ≤ m we have

P(S, n) = b0(S)
(

n−m
0

)
+ b1(S)

(
n−m

1

)
+ · · ·+ bm(S)

(
n−m

m

)
, (5)

where the constant bk(S) is the number of σ ∈ D(S, 2m) such that:

σ|m ∩ [m + 1, 2m] = [m + 1, m + k],

and σ does not admit any i-flips.

We will end this section by calculating the expansion of p({2, 4}, n). Recall that
S{2,4} = {2, 3}. For all elements σ ∈ D({2, 3}, 8) satisfying σ|4 ∩ [5, 8] = [5, 4 + k]
for some k we need to check if σ admits a 2-flip or a 4-flip. Checking for 2-flips is
very straightforward, we just need to check whether σ1 > σ3. 4-flips are slightly more
tricky as fl4 does not simply exchange a pair of coordinates, and we actually need to
calculate fl4(σ) to see if fl4(σ)3 is smaller than σ5. For each k, the related permutations
σ can be found in Table 1, along with the information on whether they admit 2 or
4-flips.
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Counting the elements that admit neither 2 nor 4-flips from Table 1 gives us the
following formula:

p({2, 4}, n) = 0
(

n− 4
0

)
+ 4
(

n− 4
1

)
+ 4
(

n− 4
2

)
+ 1
(

n− 4
3

)
.

In fact, the inclusion-exclusion principle allows us to read the coefficients for p(2, n)(ones
that admit only 4-flips), p(4, n)(ones that admit only 2-flips) and p(∅, n)(ones that ad-
mit only 4-flips) from Table 1:

p({2}, n) = 2
(

n− 4
0

)
+ 1
(

n− 4
1

)
+ 0
(

n− 4
2

)
+ 0
(

n− 4
3

)
,

p({4}, n) = 0
(

n− 4
0

)
+ 3
(

n− 4
1

)
+ 3
(

n− 4
2

)
+ 1
(

n− 4
3

)
,

p(∅, n) = 1
(

n− 4
0

)
+ 0
(

n− 4
1

)
+ 0
(

n− 4
2

)
+ 0
(

n− 4
3

)
.

Note that p({2, 4}, n) + p({2}, n) + p({4}, n) + p(∅, n) = d({2, 3}, n) as required.
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Permutation Packing in Words of the Form ππr
and ππ

Julia Krull1, Eric Redmon2, Andrew Reimer-Berg3

1Millikin University 2Lewis University 3Eastern Mennonite University

In 2014, Cratty, Erickson, and Negassi studied pattern avoidance in words of the form
ππ [3]. In 2015, Anderson, Diepenbroek, and Stoll explored pattern avoidance in
words of the form ππr [1]. Both of these groups discovered several orderly ways to
count pattern-avoiding words due to the symmetries of the words they considered.

Instead of avoiding patterns, we study pattern packing; that is, we identify words
with as many copies of a pattern as possible. While Burstein, Hästö and Mansour [2]
studied packing patterns into general words, our focus is to pack patterns into words
with symmetries. In particular, given a pattern ρ, we consider how many times we
can pack ρ into words of the form ππr and ππ, what the ρ-optimal words of these
forms look like, and how many ρ-optimal words exist for a given length of π.
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The Principal Möbius Function of Permutations With Opposing

Adjacencies

David Marchant The Open University

This talk is based on joint work with Robert Brignall

We show that if a permutation π has two opposing adjacencies, then the value of the
principal Möbius function µ[1, π] is zero. Further, we show that asymptotically the
percentage of permutations with opposing adjacencies is bounded below by 39%.

To the best of our knowledge, this is the first time that a positive proportion of the
permutation poset has been shown to have a specific principal Möbius function value.

The set of all permutations is a poset under the partial order given by containment. A
closed interval [σ, π] in a poset is the set τ : σ ≤ τ < π, and a half-open interval [σ, π)
is the set τ : σ ≤ τ < π. The Möbius function is defined recursively on an interval of
a poset [σ, π] as:

µ[σ, π] =


0 If σ 6≤ π

1 If σ = π

− ∑
λ∈[σ,π)

µ[σ, λ] otherwise

We define an adjacency in a permutation to be a pair of adjacent points of the per-
mutation that have the form (i, i + 1) or (i, i − 1). As examples, 367249815 has two
adjacencies, 67 and 98; and 1432 also has two adjacencies, 43 and 32. If an adjacency
is ascending, then it is an up-adjacency, otherwise it is a down-adjacency.

If a permutation π contains at least one up-adjacency, and at least one down-adjacency,
then we say that π has opposing adjacencies.

We prove the following:

Theorem 1. If π has opposing adjacencies, then µ[1, π] = 0.

Kaplansky [2] gives an expression for the probability that a permutation of length n
has exactly r adjacencies. Corteel, Louchard and Pemantle [1] show that the distri-
bution of adjacencies is Poisson. We combine the results from Kaplansky with those
from Corteel, Louchard and Pemantle, and then use Theorem 1 to show that:

Theorem 2. The percentage of permutations that have opposing adjacencies, and thus have
principal Möbius function value equal to zero, is, asymptotically, bounded below by 39%.

Following Theorem 2, it is natural to ask if we can find asymptotic bounds for
the percentage of permutations that have principal Möbius function value equal to
zero. Plainly, 39% is a lower bound. Based on numerical evidence supplied by Jason
Smith [3], and calculations performed by the author, we conjecture that:
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Conjecture 3. The percentage of permutations that have principal Möbius function value
equal to zero is bounded above by 61%.

References

[1] S. Corteel, G. Louchard, and R. Pemantle. Common intervals of permutations.
Discrete Math. Theor. Comput. Sci., 8(1):189–214, 2006.

[2] I. Kaplansky. The asymptotic distribution of runs of consecutive elements. Ann.
Math. Statistics, 16:200–203, 1945.

[3] J. P. Smith. Private correspondence. 2018.

117



Unknotted Cycles

Nathan McNew Towson University

This talk is based on joint work with Christopher Cornwell

When studying the structure of a permutation σ it is frequently useful to plot the
permutation, treating the permutation as a function, placing a dot at (i, σ(i)) for each
index i.

When one is interested in studying a permutation’s cycle structure in addition to its
structure as a sequence of numbers it is natural to extend the plot to be a cycle diagram
[6]. For each index i we draw a vertical dotted line from the point (i, i) to the point
(i, σ(i)), followed by a horizontal dotted line from (i, σ(i)) to (σ(i), σ(i)). If i is a fixed
point, i = σ(i), no additional lines are drawn. The result is a diagram in which the
cycles of the permutation can be readily seen by tracing out the lines of the diagram
in a natural way.

Figure 1: Cy-
cle diagram of
π = 467513298.

For example, from the cycle diagram of the permutation
π = 467513298 (written in one line notation) depicted in
Figure 1, one can readily identify the cycle decomposition
π = (145)(2637)(89) (written in cycle notation) by tracing out
the lines of the diagram. Henceforth we always write permu-
tations using one line notation. Note the only corners in a
cycle diagram occur at the plotted points of the permutation
and along the line y = x.

The appearance of these diagrams strongly resemble grid di-
agrams, which have recently become a useful tool in studying
the structure of knots in topology. [3, 4, 8] Formally, a grid
diagram is an n × n grid where every row and column has
exactly two marked boxes and the entries in every row and column are connected by
a dotted line. The diagram is then interpreted as a knot (an embedding of S1 in R3)
or a link (an embedding of multiple copies of S1 if it has multiple components) by
declaring all of the vertical lines to be overcrossings and the horizontal lines as un-
dercrossings. (All of the vertical lines are interpreted as passing above the horizontal
lines.)

It is known [3] that every knot has a grid diagram representation and there is a series
of rules, “Cromwell moves” that can transform any grid diagram of a knot into any
other grid diagram of the same knot.

Crucially, the only distinction between allowable cycle diagrams and allowable grid
diagrams are:

1. In cycle diagrams one of the two designated points in each row/column must
lie on the y = x line, which isn’t necessarily the case for grid diagrams.
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2. Grid diagrams do not allow a single point in a row/column as occur as fixed
points in cycle diagrams.

This means that the cycle diagram of any permutation without fixed points (a derange-
ment) can be interpreted as the grid diagram of a corresponding link.

Definition 1. The link associated to a cycle diagram is the link obtained by drawing
the cycle diagram of a derangement and then interpreting the diagram as the grid
diagram of a link. In the case that the derangement is itself a cycle we will refer to
this as the knot associated to a cycle diagram.

Note if a permutation is not a derangement (it has fixed points) then it is not associ-
ated to any link.

In the case that the knot associated to a cycle is the unknot (the knot type equivalent
to a circle) we will refer to the cycle as an unknotted cycle for short (or respectively a
permutation corresponding to an unlink as an unlinked permutation).

Example 2. Unknotted cycles can still have complicated-looking cycle diagrams. For
example, the cycle 837295641 depicted below is unknotted, as the reader is invited to
explore. This can be seen by removing the “kink” involving the indices 6 and 7 in the
middle of the cycle, (recalling that vertical lines cross over horizontal lines) what is
left is primarily one big kink that can be shrunk down until it too can be removed in
a similar fashion. On the other hand the cycle 34512 is not an unknot, in fact it is a
trefoil knot.

Figure 2: The cycle/grid diagrams for 837295641 (unknot) and 34512 (trefoil knot).

Main Results

Our main result is the following theorem about unknotted cycles. We denote by Sn
the nth large Schröder number. The large Schröder numbers (sequence A006318 in
the OEIS) are well-known to count a large number of combinatorial objects such as
the separable permutations.

Theorem 3. The number of the unknotted cycles of size n + 1 is Sn, the nth Large Schröder
number.

The proof works by establishing a bijection to certain signed binary trees which are
more easily counted. The crux of the argument is showing that the map from these
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trees to unknotted cycles is in fact surjective. This requires appealing to a result from
the classification of Legendrian knots, known as Bennequin’s innequality to exploit
the structure of grid diagrams of the special form arising as cycle diagrams to establish
the following, which is of interest in its own right.

Lemma 4. If a cycle σ is an unknotted cycle, then there exists at least one index i for which
|σ(i)− i| = 1. So the diagram of an unknotted cycle has at least one point immediately above
or below the diagonal.

By extending these ideas we are able to count all unlinked permutations (derange-
ments). By an unlink, we mean the knot corresponding to each cycle of the permuta-
tion is an unknot in the grid diagram, and furthermore each of these unknots are not
“linked” with one another. We obtain a bivariate generating function that keeps track
of both the size of the permutation and the number of knots in the link.

Theorem 5. Let U be the set of unlinked permutations (derangements), and denote by c(σ)
the number of cycles in σ (equivalently the knots in the link associated to σ). Define the
bivariate generating function

F(u, x) = 1 + ∑
σ∈U

uc(σ)x|σ|

to count unlinked permutations by length and number of components. Then F(u, x) satisfies
the recurrence

(2− ux)F(u, x) + ux2F(u, x)2 + uxF(u, x)
√

1− 6xF(u, x) + x2F(u, x)2

2
= 1

or equivalently 1+ (ux− 2)F(u, x) + (1− ux− ux2)F(u, x)2 + (ux2 + u2x3)F(u, x)3 = 0.

Note the coefficient of u in this generating function is 1
2 (x−x2−x

√
x2−6x+1), the

(shifted) generating function of the Large Schröder numbers. So this is in a sense
a generalization of the Large Schröder numbers for unlinked permutations. Setting
u=1, one recovers the generating function for the sequence of all unlinked permuta-
tions, a sequence, 1, 2, 8, 32, 143, 674, 3316, 16832. . . which does not yet appear in the
OEIS.

Finally, we prove several results concerning the categorization of knots that can be
associated to a cycle, and pose several open questions regarding the enumeration of
other knots besides the unknot.

Signed Trees

Various authors [2, 9] introduce the idea of separating trees to study separable permu-
tations. We introduce a similar structure, which seems to be the “right” way to keep
track of the structure of an unknotted cycle.
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Definition 6. A rooted-signed-binary tree is a rooted binary tree where each non-root
node is given a sign (positive or negative). Furthermore we define two binary rooted
trees to be equivalent if one can be obtained from another by a series of tree rotations,
where tree rotations are allowed at a given node if either

1. The child node being rotated into the position of a parent node has the same
sign as the parent.

2. The node is the root. In this case the new node is given the sign of the node
rotated to the root.

For example these trees are all equivalent, and represent all the allowed rotations of
the given tree.

+

+ −

− +

+

−

−

+

+

−

− +

+

− −

−

+

+

−

+ +

− −

−

+

+ −

Figure 3: A complete set of equivalent rooted-signed-binary trees.

Proposition 7. The rooted-signed-binary-trees are counted by the Large Schröder numbers.

The bijection

Figure 4: The
cycle diagram of
21.

We show the Large Schröder numbers count unknotted cycles by
building a bijection between them and rooted-signed-binary trees.
The idea of the bijection is as follows. Start with the rooted-signed-
binary-tree containing only the unlabelled root, which corresponds
to the trivial cycle, 21 which is clearly unknotted.

At any point in this construction a tree will have as many places
where a new node can be added as the size of the cycle. To begin
there are two places a node can be added, as either left or right children of the root
node, corresponding to positions 1 and 2 of the cycle 21. When nodes are added, they
affect the corresponding cycle according to these rules:

1. If a positive node is added in position i, insert the element i+1 prior to the ele-
ment previously in position i. Increase all elements in the cycle that previously
had value i+1 or greater by one.
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2. If a negative node is added in position i, insert the element i− 1 after the element
previously in position i. Increase all elements in the cycle that previously had
value i− 1 or greater by one.

In terms of the cycle diagrams, this has the effect of taking one of the corners where
the diagram made a right angle at the y = x line and changing it into a notch or
a kink. The change to the knot depends on the direction the lines in the diagram
behaved prior to the insertion, summarized in the following table.

Before Inserting ⊕ Inserting 	

Before Inserting ⊕ Inserting 	

Table 1: The insertion rules for signed nodes.

From these pictures we see that these changes will not affect the knot type of the cycle
diagram into which they are inserted. Thus if a given cycle corresponds to an unknot
before one of these operations is performed, it will still correspond to the unknot
afterward as well.

As an example, we build up the cycle corresponding to the tree in Figure 3. We will
construct the tree corresponding to the first diagram depicted, however the reader is
invited to verify the same cycle is obtained for any of the diagrams irrespective of the
order in which the nodes of the tree are considered.

Example 8. Consider the nodes from the first tree depicted in Figure 3 one at a time.
Starting with the root, we have the trivial cycle 21, depicted in Figure 4. We first
process the positive, right child of the root. Since the node is positive, and in position
1, we insert a 2 at the beginning, obtaining the cycle 213. We could also obtained this
by looking at the cycle diagram, and noting that the corner in position 1 was a lower
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left corner (see Table 1) and replacing the corner in the diagram with the picture in
the second column. At this point our cycle looks like the first cycle of Figure 5.

Figure 5: The cycles 231, 2341, 24531 and 246315

We now proceed by considering the leftmost leaf. It is positive and in relative position
1 of the tree, so we obtain the cycle 2341, shown second in figure 5. Since this node
has no children, we move to the negative node right of that node. The two potential
children of the previous node corresponded to positions 1 and 2 of the cycle, so this
node occupies position 3. As it is negative, we insert a 3 after position 3 of the cycle,
obtaining 24531, depicted third in figure 5. Last we consider the negative left child of
the root. It is now in relative position 5, so we insert a 5 after the last position of the
cycle, obtaining 246315.

Topology

To prove that the map from rooted-signed-binary trees to unknotted cycles is surjec-
tive we need some results from topology. The proof relies on Bennequin’s inequality
[1], or more precisely a reformulation of it for Legendrian knots [5] an important early
result in modern contact geometry (see [7]). We begin with some notation.

Definition 9. Let σ be a derangement of n elements. Define (i, j) to be a C-pair if either
i < j < σ(i) < σ(j) or i > j > σ(i) > σ(j). Additionally, define j to be a UR-index if
σ−1(i) < i and σ(i) < i.

Remark 10. Note that (i, j) is a C-pair if and only if the union of the parts of the cycle
diagram from node i to node σ(i) and from j to σ(j) has the form as on the left of
Figure 6. Also, i is a UR-index if and only if the cycle diagram at node i appears as
on the right of Figure 6.

Figure 6: The cycle diagram at a C-pair (left) and UR-index (right).

Theorem 11 (Bennequin’s Inequality). Let Dσ be the cycle diagram of σ and let K be the
knot associated to Dσ (supposing therein that σ is a cycle). Define C(Dσ) to be the number of
C-pairs of Dσ and UR(Dσ) the number of UR-indices. Let g(K) be the Seifert genus of the
knot. Then

C(Dσ)−UR(Dσ) ≤ 2g(K)− 1.
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In our case, if K is an unknot, then it bounds a disk and so the Seifert genus is
g(K) = 0, which allows us to relate the number of C-pairs to the number of UR-
indices in an unknotted cycle.
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A, B-Minimal Stirling Numbers

Brian Miceli Trinity University

This talk is based on joint work with Zachary Moring

Given a positive integer n, we denote a set partition of In = {1, 2, . . . , n} into k
nonempty parts by P = B1/B2/ · · · /Bk, where min(B1) < min(B2) < · · · < min(Bk).
We let Πn,k denote the set of all such set partitions, and we define min(P) = {min(B1), min(B2), . . . , min(Bk)}.
For example, P = 147/238/56 ∈ Π8,3, and min(P) = {1, 2, 5}. It is well known that
Sn,k = |Πn,k| is the Stirling number of the second kind, which for 0 ≤ k ≤ n satisfies the
recursion

Sn+1,k = Sn,k−1 + kSn,k,

wth initial conditions S0,0 = 1 and Sn,k = 0 if n < 0, k < 0, or n < k.

Over the past few decades, various generalizations of Sn,k have appeared in the
literature—see Gould [4] for an early example involving q-analogues. While not neces-
sarily explicitly stated in conjunction with any particular generalized Stirling number,
there are often implicit conditions being placed on the minimal elements of the parts
of the set partition generated by each new type of Stirling number. To this end, given
nonnegative integers n, k and disjoints sets A, B ⊆ In, we define the following two
numbers:

Sn,k(A; B) = |{P ∈ Πn,k | A ⊆ min(π) and i /∈ min(π) ∀i ∈ B}|

and

Bn(A; B) =
n

∑
k=1

Sn,k(A; B).

We call Sn,k(A; B) the A,B-minimal Stirling number of the second kind, and we thus define
Bn(A; B) to be the n-th A,B-minimal Bell number. Setting Sn,k(A; ∅) = Sn,k(A) and
Bn(A; ∅) = Bn(A), we note that Sn,k({1}) = Sn,k, so that Bn({1}) = Bn, the n-th
(classical) Bell number. In general we have a multitude of options when choosing A, B,
and here we discuss two that relate to interesting mathematical objects:

(i) Sn,k(Ir, {r + 1}) := Sn,k,[r], where ∑n
k=1 Sn,k,[r] := Bn,[r], and

(ii) Sn,k({i}; ∅) := S̃n,k,{i}, where ∑n
k=1 S̃n,k,{i} := B̃n,{i}.

Recall that Broder [2] defined r-Stirling numbers of the second kind, denoted by{
n
k

}
r
, to count set partitions in which 1, 2, . . . , r are in distinct subsets. This con-

dition, however, is equivalent to simply requiring Ir ⊆ min(P) for any P ∈ Πn,k, that

is, Sn,k(Ir) =
{

n
k

}
r
. Now, some of the partitions counted by

{
n
k

}
r

are also counted

by
{

n
k

}
r+1

. We can slightly alter Broder’s numbers by considering the numbers
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Sn,k,[r], i.e., we enumerate exactly those partitions of In such that 1, 2, . . . , r are mini-
mal elements of parts, but r + 1 is not. The numbers Sn,k,[r] are enumerating disjoint
sets (unlike Broder’s r-Stirling numbers), and so for any r we get Bn,[r] = Bn. More
generally, we have the following enumerative result.

Theorem 1. For 1 ≤ r < n, Bn,[r] = r
n−r−1

∑
i=0

(
n− r− 1

i

)
riBn−r−1−i.

Our second generalization, S̃n,k,{i}, enumerates exactly those partitions of [n] into k
parts such that i is a minimal element of some part of our partition. We quickly see
that B̃n,{1} = Bn, and moreover, we have the following theorem.

Theorem 2. For any positive integer n,
n

∑
i=1
B̃n,{i} = Bn+1 −Bn.

This result gives an entry point into the realm pattern avoidance in permutations, as
both the sequence {Bn+1 − Bn}n≥1 = 1, 3, 10, 37, 151, . . . and the underlying triangu-
lar sequence of S̃n,k,{i}’s appear in literature on generalized patterns—see [3] and [1],
respectively. Indeed, let σ = σ1σ2 · · · σn ∈ Sn be a permutation of In. We say that σ

avoids the pattern 1-32 if there do not exist 1 ≤ i < j < n such that σi < σj+1 < σj, and
we define

Avn(1-32) = {σ ∈ Sn | σ avoids 1-32}.

Corollary 3. For any positive integer n,
n

∑
i=1
B̃n,{i} = |{σ ∈ Avn+1(1-32) | σn < σn+1}|.

An example is given below, where in the top row we list the elements enumerated
by ∑3

i=1 B̃3,{i}: the element corresponding to i is colored for each i = 1, 2, 3. In the
bottom row we list out the elements enumerated by |{σ ∈ Av4(1-32) | σ3 < σ4}|,
where here we have colored the rises at the end of these permutation in order to hint
at the fact that the partitions in which i is a minimal element correspond bijectively
to permutations where σn+1 = n + 2− i.

123 1/23 12/3 13/2 1/2/3 13/2 1/23 1/2/3 12/3 1/2/3
1234 2134 2314 3124 3214 2413 4123 4213 3412 4312

Finally, it is worth noting that there are clearly rook theory interpretations of Sn,k(A; B),
and also, for different choices of A, B, there are interesting q-analogues of A, B-
minimal Stirling numbers.
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Enumeration of Super-Strong Wilf Equivalence Classes

of Permutations

Ioannis Michos European University, Cyprus

This talk is based on joint work with Christina Savvidou

Super-strong Wilf equivalence classes in the symmetric group Sn on n letters were
shown in [2] to be in bijection with pyramidal sequences of consecutive differences.
In this article we enumerate the latter giving recursive formulae in terms of a two-
dimensional analogue of the sequence of non-interval permutations. As a by-product,
we give a recursively defined set of representatives of super-strong Wilf equivalence
classes in Sn.

Introduction

In this work we continue the study of super-strong Wilf equivalence on permutations
in n letters that commenced in [2]. This notion was originally referred to as strong
Wilf equivalence by S. Kitaev et al. in [3]. J. Pantone and V. Vatter in [5] used the term
“super-strong Wilf” to distinguish this from a more general notion they defined and
called strong Wilf equivalence. Detailed proofs of the results presented here can be
found in [4]. Let P denote the set of positive integers.

Definition 1. ([3, Section 5]) Two words u, v ∈ P∗ are called super-strongly Wilf equiv-
alent, denoted u∼ssv, if there exists a weight-preserving bijection f : P∗ → P∗ such
that Em(u, w) = Em(v, f (w)) for all w ∈ P∗.

In [2] super-strongly Wilf equivalence classes in Sn were characterized using sequences
of consecutive differences of permutations. The latter are defined as follows.

Definition 2. ([2, Definition 3]) Let u ∈ Sn and s = s1 · · · si · · · sn = u−1. For i =
n− 1 down to 1 consider the proper suffix si · · · sn of s and its alphabet set Σi(s) =

alph(si · · · sn) = {s(i)i , . . . , s(i)n }, where s(i)i < · · · < s(i)n . We define ∆i(s) to be the vector

of consecutive differences in Σi(s), i.e., ∆i(s) = (s(i)i+1− s(i)i , . . . , s(i)n − s(i)n−1). The sequence
p(s) = (∆1(s), ∆2(s), . . . , ∆n−2(s), ∆n−1(s)) has a pyramidal form and is called the
pyramidal sequence of consecutive differences of s ∈ Sn.

The main result of [2] is the following.

Theorem 3. ([2, Theorem 3]) Let u, v ∈ Sn and s = u−1, t = v−1. Then u∼ssv if and only
if ∆i(s) = ∆i(t), for each i ∈ [n− 1], i.e., if and only if p(s) = p(t).

To enumerate such pyramidal sequences it is more convenient to leave aside their
connections to permutations and focus on the following construction based on three
simple rules.
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Definition 4. A pyramidal sequence of vectors is a sequence of the form

p = (∆1, . . . , ∆i, ∆i+1, . . . , ∆n−1),

where each ∆i is a sequence of n− i positive integers such that ∆1 = (1, 1, . . . , 1︸ ︷︷ ︸
n−1

) and

if ∆i = (d1, d2, . . . , dn−i−1, dn−i) we have the following three options for ∆i+1:

∆i+1 =


(d1, . . . , dk−1, dk + dk+1, dk+2, . . . , dn−i), for some k ∈ [n− i− 1], or

(d2, . . . , dn−i−1, dn−i), or

(d1, d2, . . . , dn−i−1).

It is important to note that if ∆i = (d, d, . . . , d︸ ︷︷ ︸
n−i

) for some d ∈ P, the second and third

options coincide. Let Πn denote the set of all pyramidal sequences of the above form.

It is helpful to view the above definition in the following way. Suppose that we
originally have n walls which define n − 1 chambers with one ball in each one of
them. This is precisely the situation in ∆1. Then at each step the transition from ∆i to
∆i+1 can be visualized by a removal of one wall. If this wall is internal, the balls at its
left and right chamber will all be concentrated at one unified chamber. On the other
hand, if this wall is external, all corresponding balls to its left (if it is a right wall) or
to its right (resp. if it is a left one) will be removed. This combinatorial game ends
when all the original n− 1 balls will be removed. We want to enumerate the number
of ways that this can be done, considering that two moves are different if they result
to a different set-up of chambers and balls.

Prefixes of generalized non-interval permutations

A word of length l ≥ 2 is called periodic when its vector of consecutive differences is
equal to (d, d, . . . , d︸ ︷︷ ︸

l−1

), for some d ∈ P.

Definition 5. For i ∈ [n− 2], we define the set Di,n as the set of words u of length i
which appear as non-empty prefixes of permutations in Sn whose remaining (n− i)-
lettered suffix is periodic and furthermore this index i is the smallest one attaining
that form of periodicity. Set di,n = |Di,n|.

Definition 6. For i ∈ [n− 2], a trapezoidal sequence of vectors is a sequence of the initial
parts (∆1, ∆2, ∆3, . . . , ∆i+1) of an element in Πn such that ∆i+1 = (d, d, . . . , d︸ ︷︷ ︸

n−i−1

), for some

d ∈ P and there is no j ∈ [2, i] such that ∆j = (e, e, . . . , e︸ ︷︷ ︸
n−j

), for some e ∈ P. Let ∆ i,n

denote the set of all such trapezoidal sequences.

Proposition 7. Let n ∈ P and i ∈ [2, n− 2]. There is a bijection between the set of prefixes
Di,n and the set of trapezoidal sequences ∆ i,n.
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Sketch of proof. Each word in Di,n may be viewed as a sequence of i walls that are
going to be deleted one after the other, starting from the original n walls containing
n− 1 balls. Taking into consideration the way that the balls are separated after each
wall deletion, a unique trapezoidal sequence in ∆ i,n is constructed bottom-up. This is
a well defined map and it is not hard to show that it is a bijection.

The enumeration of super-strong Wilf equivalence classes is then based on the num-
bers di,n as follows.

Theorem 8. The number sn of distinct super-strong Wilf equivalence classes of Sn is given
by the recursive formula

sn = sn−1 +
n−2

∑
i=2

di,n · sn−i.

Sketch of proof. Let Ti,n = {(∆1, . . . ∆i, ∆i+1, . . . , ∆n−1) ∈ Πn : (∆1, . . . ∆i, ∆i+1) ∈ ∆ i,n},
for i ∈ [n− 2]. We clearly have Πn = T1,n t T2,n t · · · t Ti,n t · · · t Tn−2,n. The enumer-
ation of Ti,n is then achieved by observing that any of its pyramidal sequence consists
of a trapezoidal part from ∆ i,n and an upper part corresponding to a pyramidal se-
quence in Πn−i via a suitable scalar factor.

Corollary 9. A set of super-strong Wilf equivalence classes representatives in Sn is described
recursively by the set of the inverses of

Rn = {u · v : u ∈ Ei,n; red(v) ∈ Rn−i; i ∈ [n− 2]},

where red(v) is the reduced form of v; E1,n = {1} and Ei,n = Di,n, for i ≥ 2.

Let sj,n be the number of super-strong Wilf equivalence classes of order 2j in Sn, where
j ∈ [n− 1]. Note that s0,n = 0.

Theorem 10.

sj,n = sj−1,n−1 +
n−j−1

∑
k=2

dk,n · sj,n−k.

In view of the above results, to calculate sn and sj,n we need a formula for the coeffi-
cients di,n. For given l, m ∈ P let ql,m and rl,m be the unique quotient and remainder,
respectively, of the Euclidean division of l with m.

Theorem 11. Let n ≥ 4. For a given i ∈ [n − 2] set m = n − i − 1. Then we have the
following recursive formula for the numbers di,n

i

∑
k=1

qn−k,m

2
· (rn−k,m + i− k + 1) · dk,n · (i− k)! =

qn,m

2
· (rn,m + i + 1) · i!.

Sketch of proof. Let pi,n be the number of all prefixes u of length i of permutations in Sn
with corresponding suffix v, an m-periodic word. The right hand side of the formula
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calculates pi,n by counting such periodic words v and multiplying each one of them
with the i! choices for u. For the left hand side an alternative counting method is
used starting from the prefixes u′ ∈ Dk,n of u. For such a prefix u′, the choices for the
periodic word v are enumerated likewise and the choices for the suffix of u′ in u are
(i− k)! due to the remaining i− k letters in u.

The numbers di,n are related to the number an of non-interval permutations, i.e., per-
mutations of size n ≥ 2 such that any prefix of length 2 ≤ l < n is not, up to order,
equal to the interval [k, l + k − 1], for some k ∈ [n− l + 1] [1, Theorem 4.4]. This is
the sequence 2, 2, 8, 44, 296, 2312, 20384, . . . (also known as |bn|, where bn is Sequence
A077607 of [6]). It turns out that dk,n = ak+1, for k < b n

2 c. This is not a mere coinci-
dence due to the next result.

Proposition 12. There is a bijection between the set of prefixes Dk,n, for k < b n
2 c and the set

Ak+1 of all non-interval permutations of length k + 1.

i\n 3 4 5 6 7 8 9 10 11 12

1 3 2 2 2 2 2 2 2 2 2
2 6 4 2 2 2 2 2 2 2
3 24 16 14 8 8 8 8 8
4 168 100 80 68 44 44 44
5 1,212 712 500 488 416 296
6 10,824 6,376 4,664 3,704 3,512
7 103,992 58,336 43,592 33,152
8 1,114,944 630,544 444,992
9 12,907,824 7,167,802

10 162,773,970

Table 1: The numbers di,n for 1 ≤ i ≤ 10 and 3 ≤ n ≤ 12

n 1 2 3 4 5 6 7 8 9 10 11 12

sn 1 1 2 8 40 256 1,860 15,580 144,812 1,490,564 16,758,972 205,029,338

Table 2: The numbers sn for 1 ≤ n ≤ 12
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Recognizing Merge Classes

Michal Opler Charles University

This talk is based on joint work with Vít Jelínek and Pavel Valtr

We say that a permutation π is a merge of σ and τ if the elements of π can be colored
red and blue so that the red elements form a copy of σ and the blue elements form
a copy of τ. For permutation classes C and D, we denote by C � D the class of all
possible merges of τ from C and σ from D.

The concept of merges was extensively studied from the structural point of view by
Jelínek and Valtr [2]. Here, our goal is to look at this concept from an algorithmic
perspective. Let C-recognition be the problem of deciding whether a given permu-
tation π belongs to the permutation class C. We are interested in the computational
complexity of (C� D)-recognition problems for various choices of C and D.

Our first algorithmic approach is based on the concept NLOL-recognizable permu-
tation classes, which we introduce. We say that a class C is non-deterministically
logspace online recognizable, or NLOL-recognizable, if there is a non-deterministic al-
gorithm A operating in the following way: to recognize whether a given permuta-
tion π = π1, . . . , πn is in C, the algorithm A first receives the length n of π, and is
given access to O(log n) bits of memory where it can store arbitrary data. Next, A
receives the values π1, . . . , πn one by one. Upon receiving πi, A may carry out an ar-
bitrary non-deterministic computation, and then it answers whether the permutation
order-isomorphic to π1, . . . , πi belongs to C. The algorithm can store any data of size
O(log n) in its memory, but it cannot access any part of the input except the latest
value πi that it has received. The algorithm A has to non-deterministically recognize
C in the following sense: the sequence π1, . . . , πi is order-isomorphic to a permuta-
tion in C if and only if there is a computation of A over n, π1, . . . , πi that answers the
question positively.

Observe that for a NLOL-recognizable permutation class C, C-recognition can be
decided in polynomial time by simply constructing the graph of all possible transi-
tions between memory states during the non-deterministic computation. It can be
shown that NLOL, when viewed as a set of permutation classes, is closed under tak-
ing unions, intersections, sum closures, gridding, complements, reverses and most
importantly merges. Therefore, we obtain the following result.

Theorem 1. If C and D are NLOL-recognizable permutation classes, then C � D is also
NLOL-recognizable, and in particular (C � D)-recognition can be solved in polynomial
time.

This theorem provides non-trivial results, as NLOL contains for example the class of
layered permutations, the class of co-layered permutations, the class Av(1 · · · k) for
any k, or the class of separable permutations with decomposition trees of bounded
depth.
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Another of our results is based on the concept of treewidth of a permutation, de-
fined by Ahal and Rabinovich [1]. We show that for any σ and τ, the Av(σ) �
Av(τ)-recognition problem can be solved in polynomial time on inputs of bounded
treewidth. More precisely, we obtain the following result.

Theorem 2. Let τ and σ be permutations of size at most k, and let π be a permutation of size
n and treewidth at most k. Then we can decide whether π belongs to Av(τ)�Av(σ) in time
O( f (k)n) for a function f .

Finally, we construct polynomial algorithms for several special cases of merges not
covered by the previous approaches. For instance, we prove the following result.

Theorem 3. For k ≥ 0, l ≥ 2 and m ≥ 1, Av((1 · · · k)⊕ (l . . . 1)⊕ (1 · · ·m))�Av(21)-
recognition can be solved in polynomial time.
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On the Growth of Merges and Staircases of Permutation Classes

Jay Pantone Dartmouth College

This talk is based on joint work with Michael Albert and Vince Vatter

Given two permutation classes C and D, their merge, written C � D, is the set of all
permutations whose entries can be colored red and blue so that the red subsequence
is order isomorphic to a member of C and the blue subsequence is order isomorphic
to a member of D. We further call such a coloring a (C,D) coloring.

Merges seem to appear only rarely “in nature”, with two notable exceptions. First,
it is well known that the entries of a k · · · 21-avoiding permutation can be partitioned
into k− 1 increasing subsequences, from which it follows that

Av(k · · · 21) = Av(21)� · · · �Av(21)︸ ︷︷ ︸
k− 1 copies of Av(21)

= Av((k− 1) · · · 21)�Av(21).

First studied by Stankova [13], the class of skew merged permutations is also a merge; it
is the class Av(21)�Av(12).

Very little is known about the asymptotic behavior of the sequence |(C � D)n|, even
when the asymptotic behaviors of |Cn| and |Dn| are known exactly. An upper bound
on |(C �D)n| can be obtained by noting that there are (n

i )
2 ways to partition a permu-

tation of length n into two subpermutations of lengths i and n− i, yielding

|(C �D)n| ≤
n

∑
i=0

(
n
i

)2

|Ci||Dn−i|. (†)

A comparison between (†) and the Binomial Theorem yields the following upper
bound on gr(C � D), which first appeared implicitly in the work of Albert [1] and
was rediscovered by Claesson, Jelínek, and Steingrímsson [9].

Proposition 1. For any two permutation classes C and D,

gr(C �D) ≤
(√

gr(C) +
√

gr(D)
)2

.

The only known lower bound on the growth rate of C �D in general is gr(C) + gr(D),
which is achieved by their juxtaposition, the class of permutations which consist of a
prefix order-isomorphic to a member of C followed by a suffix order-isomorphic to
a member of D. Despite the large gap between bounds, we are not aware of any
pair of permutation classes whose merge does not achieve the bound in Proposition 1.
This is the main question addressed here: Under what conditions on C and D can we
guarantee that the upper bound on the growth rate of C �D provided by Proposition 1
is actually achieved?
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In the next section we establish a sufficient condition for the growth rate of C � D to
match the upper bound in Proposition 1. A class C is sum closed if π ⊕ σ ∈ C for all
π, σ ∈ C and skew closed if π	 σ ∈ C for all π, σ ∈ C. A simple application of Fekete’s
Lemma for super-multiplicative sequences shows that sum closed and skew closed
classes have proper growth rates (this argument was first given by Arratia [3]). We
can now state our main result.

Theorem 2. If each of the classes C and D is either sum or skew closed then

gr(C �D) =
(√

gr(C) +
√

gr(D)
)2

.

In particular, all principal classes are either sum or skew closed, and thus we see that
the growth rate of the merge of any two principal classes is equal to the upper bound
in Proposition 1.

A striking example of the usefulness of Theorem 2 is its application to Av(k · · · 21). Be-
cause permutations in this class can be partitioned into k− 1 increasing subsequences,
it is easy—even without appealing to Proposition 1—to see that

gr(Av(k · · · 21)) ≤ (k− 1)2.

That this upper bound is the actual growth rate was first established by Regev [12]
via a deep argument (though it should be noted that Regev established quite a bit
more as well). However this fact follows easily from Theorem 2 via induction because
Av(k · · · 21) = Av((k− 1) · · · 21)�Av(21).

With no known counterexamples, we are compelled to ask if the upper bound on the
growth rate of the merge of two classes is always correct:

Question 3. Is it the case that

gr(C �D) =
(√

gr(C) +
√

gr(D)
)2

for every pair of classes C and D with proper growth rates?

We prove Theorem 2 in the next section and present an application of it in a later
section. We conclude by discussing a candidate for the “next” most obvious merge to
consider in investigating Question 3.

Staircases

In order to prove Theorem 2 we must take a detour to study certain permutation
classes that we call staircase classes, which are special cases of infinite grid classes of
permutations. Therefore, in this section we will first define grid classes and recall
an important result about their growth rates. Then, we will define staircase classes,
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Figure 1: The two staircases we use: the infinite increasing (C,D) staircase on the left
and the infinite counterclockwise spiral (C,D) staircase on the right.

compute a bound on their growth rates, and conclude the section by illustrating the
connection between staircase classes and merges.

Suppose that M is a t × u matrix of permutation classes, where t is the number of
columns, and u the number of rows. An M-gridding of the permutation π of length
n is a pair of sequences 1 = c1 ≤ · · · ≤ ct+1 = n + 1 (the column divisions) and
1 = r1 ≤ · · · ≤ ru+1 = n + 1 (the row divisions) such that for all 1 ≤ k ≤ t and
1 ≤ ` ≤ u, the entries of π with indices in [ck, ck+1) and values in [r`, r`+1) are order
isomorphic to an element of Mk,`. The grid class ofM, written Grid(M), consists of
all permutations which possess anM-gridding. The aforementioned juxtaposition of
C and D can be expressed in this language as Grid(C D).

By relating their growth rates to the asymptotics of certain walks in a bipartite graph,
Bevan [4] gave a formula for growth rates of monotone grid classes, that is, those where
every cell is either the empty class ∅, the increasing class Av(21), or the decreasing
class Av(12). Albert and Vatter [2] have since established the following generalization.

Theorem 4 (Albert and Vatter [2]). Let M be a t× u matrix of permutation classes, each
with a proper growth rate, and define the t× u matrix Γ by Γk,` =

√
gr(Mk,`). The growth

rate of Grid(M) is equal to the greatest eigenvalue of ΓTΓ (or equivalently, of ΓΓT).

A picture of the infinite increasing (C,D) staircase is shown on the left of Figure 1.
Before defining this staircase as a grid class, we should warn the reader that, so that
the entries of our matrices align with those of our permutations, we index matrices
in Cartesian coordinates. ThusMk,` denotes the entry in the kth row from the bottom
and the `th column from the left. With that warning issued, the infinite increasing
(C,D) staircase is equal to

Grid

 ... ...
C D

C D

 .

In our indexing, the entries of the main diagonal of the matrix are equal to C and the
entries of the adjacent diagonal are equal to D.
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For the rest of this section we assume that the classes C and D both have proper
growth rates. We define the t-step increasing (C,D) staircase to be the subclass of
the infinite staircase corresponding to the first t rows. The matrix defining the t-step
increasing (C,D) staircase therefore has t rows and t + 1 columns. For this grid class,
the matrix Γ of Theorem 4 contains diagonal entries equal to

√
gr(C) and subdiagonal

entries equal to
√

gr(D). Furthermore, recalling our unusual matrix indexing, we see
that ΓΓT is the t× t matrix defined by

(ΓΓT)k,` =


gr(C) + gr(D) if k = `,√

gr(C) gr(D) if |k− `| = 1, and

0 otherwise.

Thus ΓΓT is a tridiagonal Toeplitz matrix, meaning that its nonzero entries are con-
fined to the main diagonal and the two diagonals immediately above and below it
(the tridiagonal condition) and that its entries along a given diagonal are identical (the
Toeplitz condition). Tridiagonal Toeplitz matrices are one of the few families of ma-
trices for which exact formulas for their eigenvalues and eigenvectors are known (for
example see Meyer [11, Example 7.2.5]); the eigenvalues of a t× t tridiagonal Toeplitz
matrix with subdiagonal entries a, main diagonal entries b, and superdiagonal entries
c are given by

λj = b + 2
√

ac cos
(

jπ
t + 1

)
for j = 1, . . . , t. Applying this to ΓΓT, Theorem 4 implies that the growth rate of any
t-step (C,D) staircase is

gr(C) + 2
√

gr(C) gr(D) cos
(

1
t + 1

)
+ gr(D). (‡)

As t→ ∞, the central term approaches 2
√

gr(C) gr(D), showing that the growth rate
of the infinite increasing (C,D) staircase is at least (

√
gr(C) +

√
gr(D))2.

Proposition 5. The growth rate of any infinite (C,D) staircase is at least(√
gr(C) +

√
gr(D)

)2

.

We are now ready to establish Theorem 2. Suppose that each of C and D is either sum
closed or skew closed. By symmetry, we may suppose that C is sum closed. If D is also
sum closed, then we see that every member of the infinite increasing (C,D) staircase
is the merge of a permutation from C and one from D. As the growth rate of this
staircase matches the upper bound on the growth rate of C � D from Proposition 5,
we are done. Otherwise, D must be skew closed. In this case, the members of the
infinite counterclockwise spiral (C,D) staircase shown on the right of Figure 1 are
contained in C �D, and again we have achieved the upper bound from Proposition 5,
completing the proof of Theorem 2.
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Growth Rates of Principal Classes

It is somewhat remarkable that the crude bounding below by the containment of
staircases and above by the naive merge bound can, in some cases, establish the exact
growth rates of classes which are not themselves merges. To give a broad family
for which this holds we appeal to a result of Jelínek and Valtr, who investigated
the question of which classes are contained in the merge of two proper subclasses.
Strengthening earlier results of Bóna [6] and Claesson, Jelínek, and Steingrímsson [9],
they established the following (we state their result in a symmetric, skew sum form).

Proposition 6 (Jelínek and Valtr [10]). For all nonempty permutations α, β, and γ, we have

Av(α	 β	 γ) ⊆ Av(α	 β)�Av(β	 γ). (§)

We caution the reader that while Theorem 2 gives the growth rate of the class on the
right-hand side of (§), this is generally not the growth rate of the class on the left-hand
side. Consider, for example, the permutation 4231 = 1	 12	 1, where the class on
the right-hand side of (§) has growth rate 16. Indeed, establishing this upper bound
of 16 on the growth rate of Av(4231) was one of the original motivations of Claesson,
Jelínek, and Steingrímsson [9]. Bóna [8, 7] has since shown how to further restrict the
allowable merges to achieve an upper bound of 13.74.

However, in the case of β = 1, equality is achieved. Consider the infinite (Av(α 	
1), Av(1 	 γ)) increasing staircase for any permutations α and γ. Suppose to the
contrary that a member π of this staircase were to contain α 	 1	 γ, and consider
the position of the entry participating as the ‘1’ between the copies of α and γ. If this
entry were to lie in a cell labeled by Av(α	 1), then there would have to be a copy
of α above and to its left, showing that the cell itself contained α	 1, a contradiction.
Similarly, such an entry cannot lie in a cell labeled by Av(1	 γ), as then it could not
contain a copy of γ below and to its right. This shows that Av(α	 1	 γ) contains the
infinite (Av(α	 1), Av(1	 γ)) increasing staircase, implying the following result of
Bóna.

Theorem 7 (Bóna [6, Theorem 4.2]). For all permutations α and γ,

gr(Av(α	 1	 γ)) =

(√
gr(Av(α	 1)) +

√
gr(Av(1	 γ))

)2

.

Our final application of staircases is to establish another result of Bóna.

Theorem 8 (Bóna [5, Theorem 5.5]). If β is sum indecomposable then

gr(Av(1	 β)) ≥
(

1 +
√

gr(Av(β))

)2

.

Concluding Remarks

In searching for further evidence for, or a counterexample to, Question 3, Theorem 2
shows that at least one of the classes must be neither sum nor skew closed. We must
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choose at least one of the classes so that it has no proper sum or skew closed subclass
with the same growth rate, as otherwise we could use a staircase construction with
such subclasses to achieve the upper bound. For this reason we rule out classes such
as Av(21)	Av(21), which is neither sum nor skew closed but contains a sum closed
class, Av(21), of the same growth rate.

One of the simplest examples of a merge not covered by known results or resolved by
the preceding remarks is Grid(Av(21) Av(21)) merged with Av(21). Here we pose
the following instance of Question 3.

Question 9. Is gr(Grid(Av(21) Av(21))�Av(21)) = 3 + 2
√

2?

Although not relevant to the resolution of Question 9, it is curious that this merge is
defined by a finite basis (“most” merges do not seem to be finitely based), in particular,

Grid(Av(21) Av(21))�Av(21) = Av(4321, 321654, 421653, 431652, 521643, 531642).
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On the Distribution of Peaks (and Other Statistics)

Lara Pudwell Valparaiso University

Peaks

A peak in permutation π is a position i where πi−1 < πi and πi > πi+1. Let pk(π)
be the number of peaks of π. We consider the distribution of pk over various sets of
pattern-avoiding permutations. Although ∑n≥0 ∑π∈Sn

qpk(π)zn is complicated, it turns
out that ∑π∈Av(B) qpk(π)z|π| is particularly nice when B ⊆ S3.

First, we focus on the case where |B| = 1. Since reversing π preserves peaks, we only
need to consider permutations avoiding 231, 312, or 321.

The enumeration of peaks over Av(231) is already known and is given in OEIS [4]
entry A091894:

∑
π∈Av(231)

qpk(π)z|π| = −−2zq + 2z− 1
√
−4z2q + 4z2 − 4z + 1
2zq

.

There is a natural bijection between 321-avoiders of length n with k peaks and 312-
avoiders of length n with k peaks by preserving left-to-right maxima and rearranging
the remaining (smaller) entries. Thus, it remains to compute

∑
π∈Av(321)

qpk(π)z|π| = ∑
π∈Av(312)

qpk(π)z|π|.

Baxter [2] used enumeration schemes to compute the initial terms of

∑
π∈Av(321)

qpk(π)z|π|,

and these terms are given in OEIS [4] entry A236406. However, the bivariate generat-
ing function for this distribution is new. In particular, we show that

Theorem 1.

∑
π∈Av(321)

qpk(π)z|π| = −−2z3q2 + 4z3q− 2z3 − 2z2q + 2z2 − 1 +
√
−4z2q + 4z2 − 4z + 1

2z(zq− z + 1)2

Before we give an outline of the proof of Theorem 1, we consider some statistics on
Dyck paths.
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Dyck Path Statistics

A Dyck path of semi-length n is a path from (0, 0) to (2n, 0) that stays at or above
the x-axis and uses only the steps U = (1, 1) and D = (1,−1). Let Dn be the set of
Dyck paths of semi-length n and IDn be the set of indecomposable Dyck paths of
semi-length n, where an indecomposable path is one which passes through (i, 0) iff
i = 0 or i = 2n. Let D = ∪n≥0Dn, ID = ∪n≥0IDn, and |d| be the semi-length of Dyck
path d.

We care about two statistics in particular:

1. st(d) is the number of UUD factors in Dyck path d.

2. st2(d) is the number of UUD factors in Dyck path d that appear before the last
U.

For example,
st(UUUDDDUD) = st2(UUUDDDUD) = 1,

while
st(UUUDDDUUDD) = 2

and
st2(UUUDDDUUDD) = 1.

It turns out that:

A(q, z) := ∑
d∈D

qst(d)z|d| = ∑
π∈Av(321)

qdes(π)z|π|,

B(q, z) := ∑
d∈ID

qst(d)z|d| = z(1− q) + ∑
π∈Av(231)

qpk(π)+1z|π|+1,

C(q, z) := ∑
d∈D

qst2(d)z|d| = ∑
π∈Av(321)

qpk(π)z|π|,

and

D(q, z) := ∑
d∈ID

qst2(d)z|d| = ∑
π∈Av(321)

qdes(π)z|π|+1.

By focusing on the Dyck path statistics, it follows naturally that A = 1 + A · B and
C = 1 + A · D. However, since D = zA, we know that C = 1 + zA2. While this is
natural in terms of Dyck paths, it is more interesting in terms of permutations.
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In 2010, Barnabei, Bonetti, and Silimbani [1] studied the distribution of descents over
Av(321). They showed

A(q, z) = ∑
π∈Av(321)

qdes(π)z|π| = −−1 +
√
−4z2q + 4z2 − 4z + 1

2z(zq− z + 1)
.

From this, we can now derive exact expressions for B(q, z), C(q, z), and D(q, z). In
particular, C(q, z) = 1 + zA(q, z)2 is the generating function given in Theorem 1,
which is new to the literature.

We expect the distribution of descents and the distribution of peaks over Av(321) to
be related. In particular, since a 321-avoiding permutation has no double descents,
every descent is either at the beginning of the permutation or is part of a peak. That
is, given π ∈ Avn(321), either des(π) = pk(π) or des(π) = pk(π) + 1. The fact that
the distribution of peaks over Av(231) arises in conjunction with this same Dyck path
statistic is perhaps more surprising.

In [1], Barnabei, Bonetti, and Silimbani used Kratenthaller’s bijection between 123-
avoiding permutations and Dyck paths [3] to show that the number of descents in a
123-avoiding permutation π is equal to the number of valleys (DU factors) plus the
number of triple falls (DDD factors) in the corresponding Dyck path. We now have an
even simpler description. By symmetry, 123-avoiding permutations of length n with
k descents are in bijection with 321-avoiding permutations of length n with k ascents
(i.e. n− 1− k descents). We prove the identity

∑
d∈D

qst(d)z|d| = ∑
π∈Av(321)

qdes(π)z|π|

by letting dπ be the Dyck path corresponding to π under Kratenthaller’s bijection
and then providing an involution on Avn(321) to account for the permutations where
st(dπ) 6= des(π). Thus, instead of tracking two statistics on Dyck paths to enumerate
the distribution of descents over 321-avoiders, we need only track one statistic (copies
of UUD). This map also helps account for the correspondence between the Dyck path
interpretation and the permutation interpretation of D(q, z). The correspondence for
C(q, z) is simpler to describe, and the correspondence for B(q, z) was already known
via recursive descriptions of the appropriate permutations and Dyck paths.

Other Statistics

Beyond peaks, we consider the distribution of double ascents and double descents
over Av(B). In Av(231) and Av(312) these statistics correspond to a pattern statistic
on the set of all binary trees. In Av(321), there are no double descents, and the
distribution of double ascents is new to the literature.
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The distribution of these statistics over Av(B) where |B| ≥ 2 results in a number of
well-known combinatorial sequences.
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Classical Pattern Distribution in Sn(132) and Sn(123)

Dun Qiu University of California, San Diego

This talk is based on joint work with Jeff Remmel

Given a sequence w = w1 . . . wn of distinct integers, let red[w] be the permutation
found by replacing the i-th smallest integer that appears in σ by i. For example, if
σ = 2754, then red[σ] = 1432. Given a permutation τ = τ1 . . . τj in the symmetric
group Sj, we say that the pattern τ occurs in σ = σ1 . . . σn ∈ Sn provided there exist
1 ≤ i1 < · · · < ij ≤ n such that red[σi1 . . . σij ] = τ. We say that a permutation σ avoids
the pattern τ if τ does not occur in σ. In the theory of permutation patterns, τ is
called a classical pattern.

Let Sn(τ) denote the set of permutations in Sn which avoid τ. If Λ is a collection of
permutations, then we let Sn(Λ) denote the set of permutations in Sn which avoid
each permutation in Λ. Let occrτ(σ) denote the number of pattern τ occurrence in
the permutation σ. For example, the permutation σ = 867943251 avoids pattern 132,
while it contains pattern 123 and occr123(σ) = 1 since the only the subsequence 6, 7, 9
matches pattern 123.

We have studied distribution of consecutive patterns in 132-avoiding permutations
and 123-avoiding permutations in a different research. It is then a natural ques-
tion to study the distribution of classical patterns in 132-avoiding permutations and
123-avoiding permutations.

Given two sets of permutations Λ = {λ1, . . . , λr} and Γ = {γ1, . . . , γs}, we study the
distribution of classical patterns γ1, . . . , γs in Sn(Λ). We define

QΓ
Λ(t, x1, . . . , xs) = 1 + ∑

n≥1
tnQΓ

n,Λ(x1, . . . , xs),

where
QΓ

n,Λ(x1, . . . , xs) = ∑
σ∈Sn(Λ)

x
occrγ1 (σ)

1 · · · xoccrγs (σ)
s .

Especially, we have

Qγ
λ(t, x) = 1 + ∑

n≥1
tnQγ

n,λ(x) and Qγ
n,λ(x) = ∑

σ∈Sn(λ)

xoccrγ(σ).

The main goal of our research is to study the generating functions Qγ
λ(t, x) when λ

and γ are both permutation of length 3. We first study the Wilf-equivalent classes of
pattern of length 3 in Sn(132) and Sn(123).

Given a permutation σ, we denote the reverse of σ by σr, the complement of σ by σc,
the reverse-complement of σ by σrc, and the inverse of σ by σ−1. For example, let
σ = 15324, then σr = 42351, σc = 51342, σrc = 24315, σ−1 = 14352.
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It is easy to see that Sn(123) is closed under the operation reverse-complement, and
both Sn(123) and Sn(132) are closed under the operation inverse. Thus we have the
following lemma.

Lemma 1. Given any permutation pattern γ,

Qγ
123(t, x) = Qγrc

123(t, x) = Qγ−1

123 (t, x), Qγ
132(t, x) = Qγ−1

132 (t, x).

When we let γ be a pattern of length 3, we can have the following corollary.

Corollary 2. Considering the distribution of pattern of length 3, there are 4 Wilf-equivalent
classes for Sn(132),

(1) Q123
132(t, x), (2) Q213

132(t, x), (3) Q231
132(t, x) = Q312

132(t, x), (4) Q321
132(t, x),

and there are 3 Wilf-equivalent classes for Sn(123),

(1) Q132
123(t, x) = Q213

123(t, x), (2) Q231
123(t, x) = Q312

123(t, x), (3) Q321
123(t, x).

It is easy to check that all the 7 generating functions are different when looking at
small cases. Our main goal then becomes studying the 7 generating functions.

Results on generating functions Qγ
λ(t, x)

Given σ = σ1 . . . σn ∈ Sn, we define inv(σ) =
∣∣{(i, j)|1 ≤ i < j ≤ n, σi > σj}

∣∣ to be
the number of inversions and coinv(σ) =

∣∣{(i, j)|1 ≤ i < j ≤ n, σi < σj}
∣∣ to be the

number of coinversions of a permutation σ. In fact, the inversion of a permutation
is the same as as the number of occurrence of pattern 21, and the coinversion is the
same as the number of occurrence of pattern 12. Clearly, inv(σ) + coinv(σ) = (n

2). We
also let LRmin(σ) be the number of left to right minima of σ.

We use Dyck path bijections to obtain recursions for our generating functions. Given
an n× n square, a Dyck path is a path made up of unit down-steps D and unit right-
steps R which starts at (0, n) and ends at (n, 0) which stays on or below the diagonal
y = n − x. Many of our results are proved using a bijection of Krattenthaler [3]
Φ : Sn(132) → Dn and a bijection of Elizalde and Deutsch [1] Ψ : Sn(123) → Dn. The
two bijections corresponds statistics like inversions and some classical patterns with
statistics on the Dyck paths. Figure 1 shows examples of bijections from S9(132) and
S9(123) to n× n Dyck path.

We first consider permutations that are avoiding 132 and the distribution of pattern
of length 2, i.e. we study the distribution of inv and coinv. We let

Q12
n,132(q) = ∑

σ∈Sn(132)
qcoinv(σ), Q12

132(t, q) = 1 + ∑
n≥1

tnQ12
n,132(q),

and Pn(p, q) = ∑
σ∈Sn(132)

pinv(σ)qcoinv(σ).

147



8

6
7

9

4
3

2

5

1

8

6

9

7

4
3

2

5

1

Figure 1: Bijection from Sn(132) and Sn(123) to n× n Dyck path

Since inv(σ) + coinv(σ) = (n
2), we have the following relation about Pn(p, q) and

Qn(q),

Pn(p, q) = ∑
σ∈Sn(132)

p(
n
2)−coinv(σ)qcoinv(σ) = p(

n
2)Qn

(
q
p

)
.

We notice that the statistic inversion of σ ∈ Sn(132) is equal to the coarea of the
corresponding Dyck path. Then, the function Q12

n,132(q) is the first type modified q-
Catalan number. It is a well known result of Fürlinger and Hofbauer [2] that

Theorem 3 (Fürlinger and Hofbauer). Let Qn(q) = Q12
n,132(q) and Q(t, q) = Q12

132(t, q),
then we have the recursions,

Q0(q) = 1, Qn(q) =
n

∑
k=1

qk−1Qk−1(q)Qn−k(q), (1)

P0(q) = 1, Pn(q) =
n

∑
k=1

qk(n−k)Pk−1(q)Pn−k(q), (2)

and we have the functional equation,

Q(t, q) = 1 + tQ(t, q) ·Q(tq, q). (3)

We are able to track all patterns of length≤ 3 on Sn(132) using simple recursion, and
we have the following theorem.

Theorem 4. We let Qγ
n,132(q, x) = ∑σ∈Sn(132) qcoinv(σ)xoccrγ(σ), then we have the following

recursive equations for the generating function Qγ
n,132(q, x) (we write Qn for short of Qγ

n,132
on the RHS of each equation).

Qγ
0,132(q, x) = 1 for each pattern γ, (4)

Q123
n,132(q, x) =

n

∑
k=1

qk−1Qk−1(qx, x)Qn−k(q, x), (5)

Q213
n,132(q, x) =

n

∑
k=1

qk−1x
(k−1)(k−2)

2 Qk−1(
q
x

, x)Qn−k(q, x), (6)

Q231
n,132(q, x) =

n

∑
k=1

qk−1x(k−1)(n−k)Qk−1(qx(n−k), x)Qn−k(q, x), (7)

Q321
n,132(q, x) =

n

∑
k=1

qk−1x
(n−k)(kn−4k+2)

2 Qk−1(
q

xn−k , x)Qn−k(
q
xk , x). (8)

148



We can also track all the patterns that

Q12,21,123,213,231,312,321
n,132 (x1, x2, x3, x4, x5, x6, x7)

=
n

∑
k=1

xk−1
1 xk(n−k)

2 x(k−1)(n−k)
5 Qk−1(x1x3x(n−k)

5 , x2x4x(n−k)
7 , x3, x4, x5, x6, x7)

·Qn−k(x1xk
6, x2xk

7, x3, x4, x5, x6, x7). (9)

We can compute generating function by Mathematica very fast using the recursion.

n Q12,21,123,213,231,312,321
n,132 (x1, x2, x3, x4, x5, x6, x7)

0 1
1 1
2 x1 + x2

3 x3
1x7 + x2

1x2x5 + x2
1x2x6 + x1x2

2x4 + x3
2x3

4 x6
1x4

7 + x5
1x2x2

5x2
7 + x5

1x2x5x6x2
7 + x5

1x2x2
6x2

7 + x4
1x2

2x4x2
5x7 + x4

1x2
2x4x2

6x7 + x4
1x2

2x2
5x2

6
+x3

1x3
2x3x3

5 + x3
1x3

2x3x3
6 + x3

1x3
2x3

4x7 + x2
1x4

2x3x2
4x5 + x2

1x4
2x3x2

4x6 + x1x5
2x2

3x2
4 + x6

2x4
3

5 x10
1 x10

7 + x9
1x2x3

5x7
7 + x9

1x2x2
5x6x7

7 + x9
1x2x5x2

6x7
7 + x9

1x2x3
6x7

7 + x8
1x2

2x4x4
5x5

7 + x8
1x2

2x4x2
5x2

6x5
7

+x8
1x2

2x4x4
6x5

7 + x8
1x2

2x4
5x2

6x4
7 + x8

1x2
2x3

5x3
6x4

7 + x8
1x2

2x2
5x4

6x4
7 + x7

1x3
2x3x6

5x3
7 + x7

1x3
2x3x3

5x3
6x3

7
+x7

1x3
2x3x6

6x3
7 + x7

1x3
2x3

4x3
5x4

7 + x7
1x3

2x3
4x3

6x4
7 + x7

1x3
2x4x4

5x3
6x2

7 + x7
1x3

2x4x3
5x4

6x2
7 + x6

1x4
2x3x2

4x5
5x2

7
+x6

1x4
2x3x2

4x4
5x6x2

7 + x6
1x4

2x3x2
4x5x4

6x2
7 + x6

1x4
2x3x2

4x5
6x2

7 + x6
1x4

2x3x6
5x3

6 + x6
1x4

2x3x3
5x6

6
+x6

1x4
2x6

4x4
7 + x5

1x5
2x2

3x2
4x5

5x7 + x5
1x5

2x2
3x2

4x5
6x7 + x5

1x5
2x3x5

4x2
5x2

7 + x5
1x5

2x3x5
4x5x6x2

7
+x5

1x5
2x3x5

4x2
6x2

7 + x4
1x6

2x4
3x6

5 + x4
1x6

2x4
3x6

6 + x4
1x6

2x2
3x5

4x2
5x7 + x4

1x6
2x2

3x5
4x2

6x7 + x4
1x6

2x2
3x4

4x2
5x2

6
+x3

1x7
2x4

3x3
4x3

5 + x3
1x7

2x4
3x3

4x3
6 + x3

1x7
2x3

3x6
4x7 + x2

1x8
2x5

3x4
4x5 + x2

1x8
2x5

3x4
4x6 + x1x9

2x7
3x3

4 + x10
2 x10

3

Table 1: expression of Q12,21,123,213,231,312,321
n,132 (x1, x2, x3, x4, x5, x6, x7)

We use the bijection Ψ : Sn(123) → Dn of Elizalde and Deutsch [1] to compute the 3
generation functions for permutations avoiding 123, and we obtained nice recursions.
For example, we have

Theorem 5. Let Q132
n,123(s, q, x) = ∑σ∈Sn(123) sLRmin(σ)qcoinv(σ)xoccr132(σ), then we have the

following recursions,

Q132
0,123(s, q, x) = 1, Q132

n,123(s, q, x) = sQn−1 +
n

∑
k=2

Qk−1(sq, qx, x)Qn−k(s, q, x). (10)

From the computation of generating functions, we notice that we can get the recur-
sions and functional equations for the function counting pattern 12 · · ·m in Sn(132)
and the function counting pattern 1m(m − 1) · · · 2 in Sn(123), for any m > 1. We
found a big coincidence among Sn(132) and Sn(123) that,

|{σ ∈ Sn(132) : occr12···j(σ) = i}| = |{σ ∈ Sn(123) : occr1j(j−1)···2(σ) = i}|

for all i < j.

This result is described in the following theorem.

Theorem 6. We let

Qn,132(x2, x3, . . . , xm) = ∑
σ∈Sn(132)

xoccr12(σ)
2 xoccr123(σ)

3 · · · xoccr12···m(σ)
m ,
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Q132(t, x2, x3, . . . , xm) = ∑
n≥0

tnQn,132(x2, x3, . . . , xm) and

Qn,123(s, x2, x3, . . . , xm) = ∑
σ∈Sn(123)

sLRmin(σ)xoccr12(σ)
2 xoccr132(σ)

3 · · · xoccr1m(m−1)···2(σ)
m ,

Q123(t, s, x2, x3, . . . , xm) = ∑
n≥0

tnQn,123(s, x2, x3, . . . , xm),

then we have the following equations,

Qn,132(x2, . . . , xm) =
n

∑
k=1

xk−1
2 Qk−1,132(x2x3, x3x4, . . . , xm−1xm, xm)Qn−k,132(x2, . . . , xm), (11)

Qn,123(s, x2, . . . , xm) = sQn−1,123(t, s, x2, . . . , xm) (12)

+
n

∑
k=2

Qk−1,123(sx2, x2x3, x3x4, . . . , xm−1xm, xm)Qn−k,123(s, x2, . . . , xm),

Q132(t, x2, . . . , xm) = 1 + Q132(tx2, x2x3, x3x4, . . . , xm−1xm, xm)Q132(t, x2, . . . , xm), (13)

Q123(t, s, x2, . . . , xm) = 1 + t(s− 1)Q123(t, s, x2, . . . , xm)

+tQ123(t, sx2, x2x3, x3x4, . . . , xm−1xm, xm)Q123(s, x2, . . . , xm). (14)

Further, let [xi]Q denote the coefficient of xi in function Q, then

[tnxj
i ]Q132 = [tnxi

j]Q123 for i < j. (15)

Equation (11) and (12) give recursions for functions Qn,132 and Qn,123, and Equation
(13) and (14) give functional equations that Q132 and Q123 satisfies.

Other generalizations and future work

We obtained the recursion tracking all patterns of length≤ 4 on Sn(132) in the way of
equation (9), and we see that every pattern is trackable by recursion on Sn(132).

On S123, we only track patterns of length 2 and 3 and the special pattern 1m(m −
1) · · · 2. The recursions on Sn(123) tend to be more complicated than those on Sn(132),
thus a simpler recursion is on Sn(123) desired.

We then adapt our method to circular permutations. We define patters on circular per-
mutations, and we can track all circular patterns of size≤ 4 on circular permutations
avoiding circular pattern 1243.

There are other equality of coefficients of generating functions Qγ
132 and Qγ

123 except
equation (15) which we can study in the future. We did not study sets of permutations
avoiding patterns other than 123 and 132, and circular patterns other than 1243.
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On Two-Sided Gamma-Positivity for Simple Permutations

Shulamit Reches and Moriah Sigron Jerusalem College of Technology

This talk is based on joint work with Ron M. Adin, Eli Bagno, and Estrella Eisenberg

Introduction

Eulerian numbers enumerate permutations according to their descent numbers. The
two-sided Eulerian numbers, studied by Carlitz, Roselle, and Scoville [7] constitute a
natural generalization. These numbers count permutations according to the number
of their descents as well as the number of descents of the inverse permutation.

Definition 1. A polynomial f (q) is palindromic if its coefficients are the same when
read from left to right as from right to left. Explicitly, if f (q) = arqr + ar+1qr+1 +
· · · + asqs with ar, as 6= 0 and r ≤ s, then we require ar+i = as−i (∀i); equivalently,
f (q) = qr+s f (1/q).

Following Zeilberger [17], we define the darga of f (q) as above to be r + s; the zero
polynomial is considered palindromic of each nonnegative darga. The set of palin-
dromic polynomials of darga n is a vector space of dimension bn/2c+ 1, with gamma
basis Γn = {qj(1 + q)n−2j | 0 ≤ j ≤ bn/2c}. The (one-sided) Eulerian polynomial

An(q) = ∑
π∈Sn

qdes(π)

is palindromic of darga n− 1, and thus there are real numbers γn,j such that

An(q) = ∑
0≤j≤b(n−1)/2c

γn,jqj(1 + q)n−1−2j.

See [13, p. 72, 78] for details.

Foata and Schützenberger [8] proved that the coefficients γn,j are actually non-negative
integers. The result of Foata and Schützenberger was reproved combinatorially, using
an action of the group Zn

2 on Sn which realizes each coefficient γn,j as the number of
orbits of a certain type. This method, called “Valley hopping", is described in [9, 5].
A nice exposition appears in [12].

Now let An(s, t) be the two-sided Eulerian polynomial

An(s, t) = ∑
π∈Sn

sdes(π)tides(π),

where ides(π) = des(π−1).

It is well known (see, e.g., [12, p. 167]) that the bivariate polynomial An(s, t) satisfies

An(s, t) = (st)n−1An(1/s, 1/t)
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and
An(s, t) = An(t, s).

A bivariate polynomial satisfying these equations will be called palindromic of darga
n− 1.

It can be proved (see [13, p. 78]) that any bivariate palindromic polynomial of darga
n− 1 can be written uniquely in the basis {(st)i(s + t)j(1 + st)n−1−j−2i | i, j ≥ 0, 2i +
j ≤ n− 1}. Gessel (see [5, Conjecture 10.2]) conjectured that the coefficients of An(s, t)
in that basis are nonnegative integers. This has recently been proved by Lin [11].
Explicitly:

Theorem 2. (Gessel’s conjecture, Lin’s theorem) For any n ≥ 1 the bivariate polynomial
An(s, t) is gamma-positive, i.e., there exist nonnegative integers γn,i,j (i, j ≥ 0, 2i + j ≤
n− 1) such that

An(s, t) = ∑
i,j

γn,i,j(st)i(s + t)j(1 + st)n−1−j−2i.

Unlike the proof for the univariate version, Lin’s proof is not combinatorial.

We propose here an analogous (and stronger) conjecture for the class of simple permu-
tations.

Conjecture 3. For each n ≥ 2,

simpn(s, t) = ∑
σ∈Simpn

sdes(σ)tides(σ)

is gamma-positive, where Simpn is the set of simple permutations of length n.

Using the substitution decomposition tree of a permutation (by repeated inflation), we
show that this would imply the original Gessel-Lin result. We also provide supporting
evidence for this conjecture.

This is an extended abstract. More details and proofs may be found in the full ver-
sion [1].

Preliminaries: notations and definitions

We start with the following:

Observation 4. Let π[α1, . . . , αk] be the inflation of the permutation π by α1, . . . , αk.

Then des(σ) = des(π) +
n
∑

i=1
des(αi) and ides(σ) = ides(π) +

n
∑

i=1
ides(αi).

The following proposition claims that every permutation has a canonical representa-
tion as an inflation of a simple permutation.
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Proposition 5. [4] Let σ ∈ Sn, (n ≥ 2). There is a unique simple permutation π 6= 1 and a
sequence of permutations α1, . . . , αk such that σ = π[α1, . . . , αk].

If π /∈ {12, 21} then α1, . . . , αk are uniquely determined by σ. If π = 12 or π = 21 then
α1, α2 are unique as long as we require that α2 is sum-indecomposable or skew-indecomposable
respectively.

Example 6. Consider the permutation σ = 452398167. We first write σ as an inflation
of 2413 as follows: σ = 2413[3412, 21, 1, 12].

One can continue the process of inflation also for the αi in a recursive way, until all the
permutations participating are simple. In our example, 3412 can be decomposed fur-
ther as 3412 = 21[12, 12] so after substituting in σ we get σ = 2413[21[12, 12], 21, 1, 12].

Remark 7. In order to clarify why the requirement that α2 is sum-indecomposable in
inflating 12 is necessary, note that the permutation 123 can be written as 12[1, 12] =
1 23 or as 12[12, 1] = 12 3. The second alternative is the one of them we choose.

This information can be easily described by a tree. We represent each π ∈ Sn by a
tree with n leaves. For each permutation σ = π[α1, . . . , αn], the simple permutation π

is represented by the root node and each αi contributes a child of the root which is
an (unlabeled) leaf if αi = 1 and a root of a sub-tree otherwise. In the latter case, if αi
is not simple then by Proposition 5, αi can be represented as αi = π′[β1, . . . , βk] with
π′ simple. We take π′ to be the root of the new sub-tree. If αi is simple of length k
then we can write αi = αi[1, 1, . . . , 1] and it has k (unlabeled) leaves. We proceed in a
recursive manner.

Definition 8. For σ ∈ Sn denote by Tσ the tree constructed by this process.

Example 9. Figure 1 depicts the trees of σ1 = 6713245, σ2 = 1257634.

Inflation is actually a localized version of the wreath product construction introduced
in [4]

Definition 10. Let A,B be sets of permutations. The wreath product of A and B is
A o B = {α[β1, · · · , βn] | α ∈ A, β1, β2, . . . , βn ∈ B}.
Example 11. Let A = {12} and B = {21, 132}, then A o B = {2143, 21354, 13254, 132465}.

We say that a set H of permutations is wreath-closed if H = H o H. The wreath closure
wc(H) of a set H of permutations, is the smallest wreath-closed set of permutations
that contains H. The wreath product operation is associative and so, if we define
H1 = H and Hn+1 = H o Hn then wc(H) =

⋃∞
n=1 Hn.

Example 12. Let A = {21}. It is easy to see that A o A = {4321} and (A o A) o A =
{87654321} and continuing in this manner one obtains that wc(A) = {[2n, 2n −
1, · · · , 1] | n ∈N}.

Finally, we have the following definition:
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Definition 13. Let Simpn (Simp≤n) be the set of all simple permutations of length n
(respectively, less or equal to n) respectively and denote by H(n) the wreath-closure of
Simp≤n, i.e. H(n) = wc(Simp≤n). Furthermore, let simpn(s, t) = ∑

σ∈Simpn

sdes(σ)tides(σ)

Example 14. H(2) = wc{1, 12, 21} is the set of all permutations that can be obtained
from the trivial permutation 1 by direct sums and skew sums. These are the separable
permutations, counted by large Schröder numbers (see [16]). The class of separable per-
mutations can also be written using pattern avoidance: H(2) = Av(3142, 2413). For
more details see [6], right after Proposition 3.2.

Two-sided gamma-positivity: partial results

Lin’s theorem (Gessel’s conjecture) for the case H(2) ∩ Sn can be derived from the
work of Fu, Lin and Zeng [10], even though they only dealt with the univariate case.
This is due to the fact that des(π) = ides(π) for any π ∈ H(2). Explicitly:

Theorem 15. For each n there exist non-negative integers γn,k (0 ≤ k ≤ b(n− 1)/2c) such
that:

∑
π∈H(2)∩Sn

sdes(π)tides(π) = ∑
π∈H(2)∩Sn

(st)des(π) =
b(n−1)/2c

∑
k=0

γn,k(st)k(1 + st)n−1−2k.

Every root which has a simple permutation of length 2 as a label (i.e. 12 or 21) is a
root of a binary sub-tree. We give special attention to the maximal binary sub-trees.
For each maximal binary sub-tree, following [6], we define the notion of a right chain
as follows:

In order to further generalize Theorem 15, we have to introduce some more defini-
tions.

Definition 16. Let T be a tree. A binary right chain (BRC) is a maximal chain composed
of consecutive right descendants, all of which are from the set {12, 21}.

The length of a BRC is the number of nodes in this chain. Note that a binary right
chain may also contain only one node. We denote by rodd(T) the number of BRC in T
of odd length.

Definition 17. A tree T is called a G-tree if it is labeled by simple permutations and the
following “right chain condition" is satisfied i.e. the labeling on each BRC alternates
between 12 and 21. Denote by GT n the set of all G-trees which have exactly n leaves.
(Recall that each Sn permutation can be represented as such a tree).

Note that the right chain condition corresponds precisely to the way we constructed
the inflation in Remark 7. By the preceding argument, we can deduce the following
theorem:
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Figure 1: Right: the tree T. Left: The tree φ1(T).

Theorem 18. For each k, the function which sends each π ∈ H(k)∩ Sn to the G-tree Tπ from
Definition 8 is an injection.

We present now a combinatorial proof for Gessel’s conjecture for H(5) ∩ Sn, where n
is arbitrary. Until the end of this section, all permutations are assumed to belong to
H(5) ∩ Sn.

Let T = Tπ be a G-tree, and let {Ri | 1 ≤ i ≤ rodd(T)} be the set of all BRC of odd
length in T. For each i, denote by φi the operator which switches 12 with 21 in each
of the nodes of Ri. By abuse of notation, denote by φi(T) the tree obtained from T in
this fashion 1. It is easy to see that the operators φi commute and, by Observation 4,
each application of any φi changes both des(π) and ides(π) by ±1.

Example 19. Consider π = 1257634. The corresponding G-tree appears in the right
side of Fig 1. The tree T = Tπ has rodd(T) = 2. If we number the odd chains from
right to left, then we have that φ1(T) is the tree in the left side of the figure. The
permutation corresponding to φ1(T) is 6713254. Note that φ1 increased both des(π)
and ides(π) by 1.

For each G-tree T and the corresponding permutation π, let l1, . . . , lk be the labels of
T that belong to the set {2413, 3142}. For each 1 ≤ j ≤ k define ψj(T) to be the tree
obtained from T by changing the label lj from 2413 to 3142 or vice versa. Again, it
is easy to see that all the ψj commute. Passing from 2413 to 3142 adds one to the
des(π) and subtracts 1 from ides(π). For any two G-trees T, S write T ∼ S if S can be
obtained from T by a sequence of applications of the actions φi and ψj we have just
defined. Clearly ∼ is an equivalence relation, partitioning the set GT n and hence also
Sn into equivalence classes.

Definition 20. For each class in GT n we define the representative of the class to be
the tree T0 in which each odd BRC begins with 12 and each node representing a
simple permutation of length 4 is 2413. It is clear from the construction that the
corresponding permutation, π0, has the minimal number of descents in its class. We
refer to both as the minimal representatives of the class.

Our next goal is to compute the bi-distribution of des and ides over an equivalence
class. In order to do that, we pick the minimal representative T0 and use the actions
φi and ψj to go over the entire class.

1This action is inspired by a similar action defined in [10] for univariate polynomials.
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Theorem 21. Let n ∈ N. There exist nonnegative integers αn,i,j (1 ≤ i ≤ n, 0 ≤ j ≤
n− 1, 0 ≤ j + 2i ≤ n− 1) such that:

∑
σ∈H(5)∩Sn

sdes(σ)tides(σ) = ∑
i,j

αn,i,j(st)i(s + t)j(1 + st)n−1−2i−j.

The BI-Eulerian polynomial for simple permutations

In [3], the ordinary generating function for the number of simple permutations was
shown to be very close to the functional inverse of the corresponding generating
function for all permutations. In this section we refine this result by considering also
the parameters des and ides. For each n ∈ N, denote by I+n (I−n ) the set of all sum-
indecomposable (respectively, skew-indecomposable) permutations in Sn. Note that
the map π 7→ π′, defined by π′(i) = n − 1− π(i) (1 ≤ i ≤ n), is a bijection from
Sn onto itself (and also from I+n onto I−n ), satisfying des(π′) = n − 1− des(π) and
ides(π′) = n− 1− ides(π). Using some further manipulations we get:

Theorem 22. For any n ≥ 4

simpn(s, t) = − f 〈−1〉
n (s, t) + (−1)n−1 + (−st)n−1.

A two-sided gamma-positivity conjecture for simple permutations

In this final section, we present a two-sided gamma-positivity conjecture for simple
permutations, and show that it implies Lin’s theorem (Gessel’s conjecture). Recall
that Simpn is the set of all simple permutations in Sn. Since Simpn is closed under the
actions of reverse and inverse, we have by arguments of symmetry (see [12, p. 78]) the
following:

Proposition 23. Let n ∈N. There exist αn,i,j ∈ R, (i, j ≥ 0, j + 2i ≤ n− 1) such that:

simpn(s, t) = ∑
π∈Simpn

sdes(π)tides(π) = ∑
i,j

αn,i,j(st)i(s + t)j(1 + st)n−1−2i−j.

In a previous section we defined actions on the set of simple permutations for n = 2
(the reverse action), n = 4 (the reverse action again), and also n = 5 (the identity
action). It follows that simp2(s, t) = 1 + st, simp4(s, t) = st(s + t), and simp5(s, t) =
6(st)2.

These techniques do not work in the case of n = 6. For example, the simple permu-
tation 246135 contributes st3 while its reverse contributes s4t2. On the other hand,
one can easily check that summing over all the simple permutations of order 6 gives a
gamma-positive polynomial: simp6(s, t) = st(s+ t)2(1+ st)+ 5(st)2(1+ st)+ 14(st)2(s+
t).

In fact, computer experiments show that simpn(s, t) are gamma-positive at least for
n ≤ 12. We therefore propose the following conjecture:
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Conjecture 24. The bivariate polynomial simpn(s, t) is gamma-positive for every n ≥ 2,
i.e., there exist nonnegative integers αn,i,j (0 ≤ j + 2i ≤ n− 1) such that:

simpn(s, t) = ∑
π∈Simpn

sdes(π)tides(π) = ∑
i,j

αn,i,j(st)i(s + t)j(1 + st)n−1−2i−j.

If the conjecture is true then we can expand Theorem 21 to Sn in the following way:
First, for each k ≥ 6, since we still have no action on the simple permutations of Sk,
for each σ = π[α1, . . . , αt] ∈ Sn, we construct a tree having π as a label of its root,
in the same way which was explained in the body of the paper. In this general case,
however, the nodes are labeled by simple permutations of arbitrary length. Then we
define an equivalence relation on Sn by declaring that two trees belong to the same
class if one can be reached from the other by applying a series of actions of the fol-
lowing two types: (1).Replace a label of one node (which is a simple permutation of
length k ≥ 4) by a simple permutation of the same order. (2) Alternate the labels of an
odd right chain, as described in the paragraph after Theorem 18. Now, given a per-
mutation σ and its tree Tσ, the polynomial S[σ] = ∑τ∼σ sdes(τ)tides(τ) is a multiplication
of polynomials corresponding to the nodes as follows:

(1) Each node representing a simple permutation of length k ≥ 4 contributes a term
of the form simpk(s, t), of darga k− 1.

(2) The v2 nodes of Tσ of length 2 contribute (st)
v2−rodd(Tσ)

2 (1 + st)rodd(Tσ), of darga v2.

In summary, for each i, let li be the length of the simple permutation labeling the node
vi. Assume that Tσ has m nodes. Then each node vi contributes li − 1 to the darga of
S[σ]. As a result we obtain that the darga of S[σ] is ∑m

i=1 (li − 1) = n− 1.
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On the Distribution of Statistics for Pattern Avoiding

Permutations

Jacob Roth Valparaiso University

This talk is based on joint work with Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, and
Teresa Wheeland

Simion and Schmidt [1] enumerated Sn(ρ1, ρ2) where ρ1, ρ2 ∈ S3. This poster high-
lights our examination of the distribution of ascents, descents, double ascents, double
descents, peaks, and valleys over these pattern classes. By the Erdős-Szekeres theo-
rem, Sn(123, 321) = ∅ for n ≥ 5, so we consider the other 5 trivial Wilf classes below.
For sufficiently large n, each formula will give the number of permutations of length
n with the given statistic equal to k. Also, A076791 is the entry in The On-Line Ency-
clopedia of Integer Sequences [2] regarding the number of binary sequences of length
n containing k 00 subsequences. We provide combinatorial proofs for each of these
distributions.
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Stack Sorting Tiers

Howard Skogman SUNY Brockport

This talk is based on joint work with Toufik Mansour and Rebecca Smith

Knuth [1] showed that a permutation π can be sorted by a stack (meaning that by
applying push and pop operations to the sequence of entries π(1), . . . , π(n) we can
output the sequence 1, . . . , n) if and only if π avoids the permutation 231, i.e., if and
only if there do not exist three indices 1 ≤ i1 < i2 < i3 ≤ n such that π(i1), π(i2), π(i3)
are in the same relative order as 231.

We consider the number of passes a permutation needs to take through a stack if we
only pop the appropriate output values and start over with the remaining entries. We
define a permutation π to be k-pass sortable if π is sortable using k passes through
the stack where the remaining entries are passed through the stack in their original
order on later attempts. Permutations that are 1-pass sortable are simply the stack
sortable permutations as defined by Knuth.

Example 1. We show the sorting of π = 356124 using three passes through a stack in
Figure 1.

output input
356124

output input

3

56124
output input

3
5

56124
output input

3
5
6

124

First pass

output input

3
5
6
1

24
output input
1

3
5
6

24
output input
1

3
5
6
2

4
output input
12

3
5
6

4

output input
12

3
5
6
4 output input

12 3564
output input
12

3

564
output input
123 564

Second pass

output input
123

5

64
output input
123

5
6

4
output input
123

5
6
4

output input
1234

5
6

output input
1234 56

output input
1234

5

6
output input
12345 6

output input
123456

Third pass

Figure 1: Sorting the permutation 356124 with k = 3 passes through a stack.

The tier of a permutation π, denoted t(π), will be defined to be the minimum number
of passes after the first pass required to sort π. We then introduce the notion of a
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separated pair, which is a specific covincular 231 pattern. One can determine the tier
of a permutation by computing the number of such separate pairs.

Theorem 2. A permutation π is 2-pass sortable, i.e. t(π) ≤ 1, if and only if π avoids

24153, 24513, 24531, 34251, 35241, 42513, 42531, 45231, 261453, 231564, 523164.

The class of permutations of tier t is in bijection with a collection of integer sequences
studied by Parker [2]. This gives an exact enumeration of tier t permutations of
a given length and thus an exact enumeration for the class of (t + 1)-pass sortable
permutations. This also allows us to give a new derivation for the generating function
in [2] and an explicit formula for the coefficients.
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Some 1× n Generalized Grid Classes Are Context-Free

Jakub Sliačan Umeå University

This talk is based on joint work with Robert Brignall

This work is concerned with the study of 1× n almost-monotone permutation grid
classes. In particular, we prove that 1 × n grid classes with n − 1 monotone cells
and one context-free cell (see Figure 1) admit algebraic generating functions. Our
approach is algorithmic and, in principle, allows us to enumerate any such class
in particular (assuming sufficient computational resources). We give examples to
illustrate the method on familiar objects.

Ever since their introduction in [12], permutation grid classes have been appearing
in enumerative and structural work on permutation classes and related areas. For
a comprehensive introduction to grid classes and their various uses see e.g. [8]. A
prominent application of grid classes has been in enumerating other permutation
classes, as witnessed by [2, 3, 4, 5, 6, 8, 9, 11].

Ever since their introduction in [12], permutation grid classes have been appearing
in enumerative and structural work on permutation classes and related areas. For
a comprehensive introduction to grid classes and their various uses see e.g. [8]. A
prominent application of grid classes has been in enumerating other permutation
classes, as witnessed by [2, 3, 4, 5, 6, 8, 9, 11].

Therefore, it would be convenient to be able to enumerate grid classes themselves.
Previous work in this direction includes [1, 7, 8]. Additionally, in [10], we gave explicit
generating functions of all juxtapositions of a Catalan class with a monotone class
(n = 2 case with the context-free class being Catalan). In this talk we extend our
previous work to larger and more general grid classes of the form shown in Figure 1.

M1 · · · Mk C Mk+1 · · · Mk+l

Figure 1: AllMi cells are monotone and C is context-free.

In what follows we set n− 1 = k + ` (for some k, ` ∈ Z≥0) such that 1× k monotone
grid class is juxtaposed on the left of C and 1× ` monotone grid class is juxtaposed
on the right of C. Together with C, this gives as 1× n grid class.

Theorem 1. Let C be a context-free permutation class that admits a combinatorial specification
which tracks both the right-most and the left-most points. Let Mi be a sequence of n −
1 monotone permutation classes. Then M1| . . . |Mk|C|Mk+1| . . . |Mk+` is a context-free
permutation class that admits an algebraic generating function.

Observe that a permutation class C with finitely many simple permutations is context-
free, yielding a notable special case of Theorem 1. This is a strict special case, however,
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as “Av(321) next to Av(21)” shows (infinitely many simples yet context-free).

Consider a 1× n grid class

M1| . . . |Mk|C|Mk+1| . . . |Mk+`.

A well-known but key ingredient to our approach is the Chomsky-Schutzenberger
theorem which states that context-free combinatorial classes admit algebraic generat-
ing functions. The remainder of our effort is then directed at proving that

M1| . . . |Mk|C|Mk+1| . . . |Mk+`

is context-free whenever C is. Our method makes alterations to the combinatorial
specification of C in such a way that the resulting combinatorial specification repre-
sents

M1| . . . |Mk|C|Mk+1| . . . |Mk+`.

The alterations consist of decorating the combinatorial specification of C with layers
of monotone sequences on the right and on the left, as required. This is made sys-
tematic through operators which represent various forms/stages of decorations while
preserving the character of the combinatorial specification that we started with. Given
the “context-freeness” invariant that stays true after applying our operators, we can
exploit the inductive nature of the problem to prove Theorem 1.

If time permits, we will present one of the concrete examples below for illustration.

• Av(321)|Av(21), infinitely many simples in Av(321)

• Av(21)|Av(21)|Av(21), n > 2

• S|Av(21), finitely many simples in S

where S denotes the class of separable permutations. Each of the examples demon-
strates a different case where our method is applicable. All three examples are worked
out explicitly in a thesis draft at

https://github.com/jsliacan/thesis
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Pattern-Avoiding Permutations and Dyson Brownian Motion

Erik Slivken University of Paris Diderot, LPSM

This talk is based on joint work with Christopher Hoffman and Douglas Rizzolo

Let Sn(k) denote the set of permutations that avoid a decreasing sequence of length
k + 1. We study a uniformly random element of this set of permutations by compar-
ing it with a random walk in a cone. To use this comparison we associate with each
permutation σ ∈ Sn(k) an ordered k-tuple, Pσ, of continuous functions on [0, 1]. Pσ

is constructed by partitioning the points in the plot of σ into k disjoint increasing se-
quences Aj(σ) where i ∈ Aj(σ) if the longest decreasing sequence in σ that terminates
at (i, σi) has length j. Linearly interpolating (0, 0) and (1, 0) with the points

sj(σ) =

(
i
n

,
σi − i√

n

)
i∈Aj(σ)

for each j produces the collection Pσ. We now give a definition necessary for the
statement of our main result.

Definition 1. Let {Xi(t)}k
i=1 be standard Brownian bridges conditioned so that ∑k

i=1 Xi =
0. Let {Zij}1≤i<j≤k be independent standard complex Brownian bridges. We use these
random variables to define the following one parameter family of Hermitian matrices
M(t) entry wise as

Mij(t) =


Xi(t), i = j
Zij(t), i < j
Zij(t) j < i

.

For any t ∈ [0, 1] let λk(t) ≥ · · · λ2(t) ≥ λ1(t) be the eigenvalues of M(t). We then
define

TDBM(t) = (λ1(t), λ2(t), · · · , λk(t)).

Theorem 2. Let (Pσ(t)|σ ∈ Sn(k)) be with σ chose uniformly at random. Then

(Pσ(t)|σ ∈ Sn(k)) −→ TDBM(t).

The proof of this theorem follows from coupling Pσ with a random walk in a cone
which has a scaling limit of TDBM(t). Let (X, Y) ∈ [k]n × [k]n and for j ∈ [k] define

aj
m =

m

∑
l=1

1xl=j, bj
m =

m

∑
l=1

1yl=j and cj
m = aj

m − bj
m.

Let

Ωn =

{
(X, Y) ∈ [k]n × [k]n : cj

n = 0 ∀ j ∈ [k]
}

.

Considering the sequence s = (c1
m, · · · , ck

m)
n
m=0 we associate with ω ∈ Ωn a walk in Zk

where the steps of the random walk consist of k-tuples where there is exactly one 1,
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one −1 and the rest are zeros, or k-tuples where every entry is 0. A uniform element
of Ωn produces a random walk, S, where the probably of every entry being zero is
1/k and each of the other k(k− 1) steps has probability 1/k2.

For σ ∈ Sn(k) we can construct ωσ ∈ Ωn by projecting the labels of the points (i, σi)
used to construct Pσ on the horizontal and vertical axis. Consequently a uniformly
random element of Sn(k) produces another measure on walks in Ωn. Our cone of
interest is

C := {(x1, · · · , xk) ∈ Zk|x1 ≤ x2 · · · ≤ xk}.

Let S denote a walk in Ωn that is conditioned to remain in C and let S′ denote a walk
in Ωn obtained from a uniform σ ∈ Sn(k). We show there is a coupling of S and S′

such that the two walks agree with high probability on the bulk of the walk. We then
show a appropriately scaled version of S converges to TDBM(t) and hence so does S′.

Fixed Points

The spacing of the components in TDBM(t) in an open set containing t = 1/2 allows
us to say something about the distribution of the number and location of the fixed

points of permutations in Ŝn(k). Define the following normalized point process that
encodes the number and location of fixed points of τ ∈ Sn :

MFP,n(τ) =
n

∑
l=1

1τ(i)=iδ(i−(n+1)/2)/
√

n.

Let (Λ1, · · · , Λk) have joint distribution given by TDBM(1/2) and let G1, · · ·Gk be
independent Bin(1/2k) that are also independent of (Λ1, · · · , Λk). We have another
point process given by

MTDBM =
k

∑
j=1

1Λj Gj.

Theorem 3. If τ ∈ Ŝn(k) is chosen uniformly at random, then MFP,n(τ) converges in
distribution to MTDBM.
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Stack Sorting r-Tiers

Rebecca Smith SUNY Brockport

This talk is based on joint work with Toufik Mansour and Howard Skogman

Knuth [1] showed that a permutation π can be sorted by a stack (meaning that by
applying push and pop operations to the sequence of entries π(1), . . . , π(n) we can
output the sequence 1, . . . , n) if and only if π avoids the permutation 231, i.e., if and
only if there do not exist three indices 1 ≤ i1 < i2 < i3 ≤ n such that π(i1), π(i2), π(i3)
are in the same relative order as 231.

Using similar priorities as in our previous work [2], we consider the number of r-passes
a permutation needs to take through a stack if we only pop the appropriate output
values and start over with the remaining entries in the order they would be when they
were popped out, i.e. the reverse of their previous order. We define a permutation
π to be k-reverse-pass sortable if π is sortable using k r-passes. Permutations that
are 1-reverse-pass sortable are simply the stack sortable permutations as defined by
Knuth.

Example 1. We show the sorting of π = 354126 using three r-passes through a stack
in Figure 1.

output input
354126

output input

3

54126
output input

3
5

4126
output input

3
5
4

126

First pass

output input

3
5
4
1

26
output input
1

3
5
4

26
output input
1

3
5
4
2

6
output input
12

3
5
4

6

output input
12

3
5
4
6 output input

12 6453
output input
12

6

453
output input
12

6
4

53

Second pass

output input
12

6
4
5

3
output input
12

6
4
5
3 output input

123

6
4
5

output input
123 645

Third pass

output input
123

6
4

5
output input
1234

6

5
output input
12345

6
5

output input
123456

Figure 1: Sorting the permutation 354126 with k = 3 passes through a stack.

The r-tier of a permutation π, denoted ρ(π), will be defined to be the minimum
number of r-passes after the first r-pass required to sort π. As with the original tier,
we can determine the r-tier of a permutation by counting specific covincular patterns.
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Theorem 2. A permutation π is 2-reverse-pass sortable, i.e. ρ(π) ≤ 1, if and only if π avoids

2413, 2431, 23154.

Applying a further restriction to the class of r-tier permutations, namely r-tier relative
to length, we find a natural bijection with down/up permutations counted by the
Euler numbers.
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Thresholds of Growth Rates for Sum-Closed Classes

Justin Troyka Dartmouth College

Recent work has focused on properties of the set of growth rates of permutation
classes, including “thresholds” of growth rates above which a class may have a cer-
tain property. For instance, Pantone and Vatter [4] give a number ξ below which there
are only countably many growth rates, and they show that ξ is the largest such num-
ber. This ξ is defined as the unique positive root of x5 − 2x4 − x2 − x − 1, and it is
approximately 2.305. Their investigation prominently features sum-closed classes; a
class C is sum-closed if σ, τ ∈ C implies σ⊕ τ ∈ C.

In this presentation, we take Pantone and Vatter’s work as a starting point for a deeper
investigation into sum-closed classes. We show some general results involving growth
rates of sum-closed classes, we highlight a few results on sum-closed classes that are
found in Pantone and Vatter’s work or follow easily from it, and we give preliminary
findings on new kinds of growth-rate thresholds that are a little bit larger than ξ.
Many of the ideas and results presented here are from [5].

Given a sum-closed class C, let C 6⊕ (resp. C 6⊕n ) denote the set of sum-indecomposable
permutations in C (resp. Cn). Given a set of permutations R, let

⊕
R denote the

smallest sum-closed class that contains every element of R. If A(x) is the ordinary
generating function for C, and C(x) for C 6⊕, then A(x) and C(x) are related by the
equation A(x) = 1/(1− C(x)). Since C is sum-closed, gr(C) exists, essentially due to
Arratia [2].

General result on growth rates of sequences

As mentioned above, when C is sum-closed, the generating functions for C and C 6⊕
are related. The next result shows that, if we add any positive number to C 6⊕k (for at
least one k), then gr(C) increases, and in fact this holds in great generality:

Proposition 1. Let C(1)(x) = ∑n≥1 c(1)n xn and C(2)(x) = ∑n≥1 c(2)n xn be two formal power
series with non-negative real coefficients and zero constant term. For i ∈ {1, 2}, define

A(i)(x) =
1

1− C(i)(x)
,

and let a(i)n be the coefficient of xn in A(i)(x). Assume that gr(a(1)n ) < ∞. If c(1)n ≤ c(2)n for
all n and c(1)n < c(2)n for some n, then gr(a(1)n ) < gr(a(2)n ).

In the talk, we will sketch the proof, which uses complex analysis. This proposition
can be useful in dealing with the growth rate of C based on the sequence

(
C 6⊕n
)

n≥1
,

because it gives us strict inequalities of growth rates where otherwise we would have
weak inequalities.
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Sum-closed classes with growth rate ≤ ξ

The following result is implicit in Pantone and Vatter [4]:

Proposition 2 (see [4, Sec. 5 & 6]). The number ξ is the smallest that satisfies: if C is
sum-closed and gr(C) ≤ ξ, then |C 6⊕n | ≤ 5 for all n.

From the table of possible sequences
(
|C 6⊕n |

)
n≥1

given in [4], we also obtain:

Proposition 3. The number ξ is the smallest that satisfies: if C is sum-closed and gr(C) ≤ ξ,
then C has a rational generating function.

In contrast, if C is not required to be sum-closed, then by [1] there are classes with
growth rate κ ≈ 2.206 whose generating functions are not rational (and indeed are
not even D-algebraic), and κ is the smallest such number.

The threshold of unbounded indecomposables

What is the smallest possible growth rate of a sum-closed class whose indecompos-
ables are unbounded? We provide an example that may have the smallest growth
rate.

Let R = {1} ∪ {(12 . . . i)	 (12 . . . j) : i, j ≥ 1}, and let C =
⊕

R. We have C 6⊕ = R, and
it turns out that C = Av(321, 3142, 2413). An example of a permutation in this class
is shown in Figure 1. We also have |C 6⊕n | = n− 1 for n ≥ 2, and gr(C) is the unique
positive root of x3 − 3x2 + 2x− 1, which is approximately 2.32472. Call this number
τ.

Conjecture 4. τ is the smallest possible growth rate of a sum-closed class C with the property
that |C 6⊕n | is unbounded.

Our example above shows that τ is a possible growth rate, so the content of Conjec-
ture 4 is that no smaller growth rate is possible. In the other direction, we know from

Figure 1: At left, a permutation in Av(321, 3142, 2413). At right, a permutation in
Av(312, 4321, 3421).
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Proposition 2 that all such growth rates are greater than ξ. Thus, the smallest thresh-
old above which |C 6⊕n | can be unbounded is somewhere in the interval [ξ, τ], whose
width is about 0.02.

Conjecture 4 would follow from this conjecture:

Conjecture 5. If C is sum-closed and |C 6⊕n | is unbounded, then |C 6⊕n | ≥ n− 1 for all n.

Conjecture 5 would mean that, for each n, the smallest possible value of |Cn| is
achieved by our example above.

The threshold of exponential indecomposables

What is the smallest possible growth rate of a sum-closed class whose indecompos-
ables are exponential? We provide an example that may have the smallest possible
growth rate, but we have not yet investigated thoroughly enough to make a conjec-
ture.

Let S = {σ	 1 : σ ∈ ⊕{1, 21}}, and let C =
⊕

S. We have C 6⊕ = S, and it turns out
that C = Av(312, 4321, 3421). An example of a permutation in this class is shown in
Figure 1. We have gr(C 6⊕) = φ = 1+

√
5

2 ≈ 1.61803, which is greater than 1; we also
have gr(C) = 1 +

√
2 ≈ 2.41421.

We know from Proposition 2 that gr(C) > ξ for all such classes. Thus, the smallest
threshold above which gr(C 6⊕) can be greater than 1 is in the interval [ξ, 1 +

√
2],

whose width is about 0.11.

Further questions

• There are no classes with upper or lower growth rate strictly between 1 and φ

[3], but is there sum-closed C with gr(C 6⊕) strictly between 1 and φ?

• It is still not known whether every class has a proper growth rate. Given a class
C, must C 6⊕ have a proper growth rate? Neither question’s resolution would
imply the other; we suspect that the question about C 6⊕ would be easier, because
it suffices to consider sum-closed C, which is much better-behaved than a general
class C.
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A Domino Tableau-Based View on Type B Schur-Positivity

Ekaterina A. Vassilieva Laboratoire d’Informatique de l’Ecole Polytechnique

This talk is based on joint work with Alina R. Mayorova

Over the past years, major attention has been drawn to the question of identify-
ing Schur-positive sets, i.e. sets of permutations whose associated quasisymmet-
ric function is symmetric and can be written as a non-negative sum of Schur sym-
metric functions. The set of permutations avoiding the patterns σ in S4 such that
|σ(1)− σ(2)| = 2, known as arc permutations is one of the most noticeable examples.
This paper introduces a new type B extension of Schur-positivity based on Chow’s
quasisymmetric functions and generating functions for domino tableaux. In particu-
lar we design descent preserving bijections between signed arc permutations and sets
of domino tableaux to show that they are indeed type B Schur-positive.

Background

Young tableaux and descent sets

A partition λ of an integer n, denoted λ ` n is a sequence λ = (λ1, λ2, · · · , λp) of
`(λ) = p parts sorted in decreasing order such that |λ| = ∑i λi = n. A partition
λ is usually represented as a Young diagram of n = |λ| boxes arranged in `(λ) left
justified rows so that the i-th row from the top contains λi boxes. A Young diagram
whose boxes are filled with positive integers such that the entries are increasing along
the rows and strictly increasing down the columns is called a semistandard Young
tableau. If the entries of a semistandard Young tableau are restricted to the elements
of [n] and strictly increasing along the rows, we call it a standard Young tableau. The
partition λ is the shape of the tableau and we denote SYT(λ) (resp. SSYT(λ)) the set
of standard (resp. semistandard) Young tableaux of shape λ. Define the descent set
of a standard Young tableau T as Des(T) = {1 ≤ i ≤ n− 1 | i is in a strictly higher
row than i + 1}. Similarly the descent set of a permutation π in Sn is the subset of
[n− 1] defined as Des(π) = {1 ≤ i ≤ n− 1 | π(i) > π(i + 1)}.

Schur-positivity

Let X = {x1, x2, · · · } be a totally ordered set of commutative indeterminates. Given
any subset A of permutations in Sn, Gessel introduces in [6] the formal power series
in C[X]:

Q(A)(X) = ∑
π∈A

FDes(π)(X),
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where for any subset I ⊆ [n− 1], FI(X) is the fundamental quasisymmetric function
defined by:

FI(X) = ∑
i1≤···≤in

k∈I⇒ik<ik+1

xi1 xi2 · · · xin .

The power series FI(X) is not symmetric in X but verifies the property that for any
strictly increasing sequence of indices i1 < i2 < · · · < ip the coefficient of xk1

1 xk2
2 · · · x

kp
p

is equal to the coefficient of xk1
i1

xk2
i2
· · · xkp

ip
. In [7] Gessel and Reutenauer looked at

the problem of characterising the sets A for which Q(A) is symmetric. Further the
question of determining Schur-positive sets, i.e. the sets A for which Q(A) can be
expanded with non-negative coefficients in the Schur basis received significant atten-
tion. Classical examples of Schur-positive sets include inverse descent classes, Knuth
classes [6] and conjugacy classes [7]. As a more sophisticated example, Elizalde and
Roichman proved [3] the Schur-positivity of arc permutations, i.e the set of permu-
tations in Sn avoiding the patterns σ in S4 such that |σ(1)− σ(2)| = 2. Arc permu-
tations are alternatively defined as the set of permutations π in Sn such that for any
1 ≤ j ≤ n, {π(1), π(2), · · · , π(j)} is an interval in Zn. Other advanced examples of
Schur-positive sets can be found in [5]. Many of these results are the consequence of
two main facts.

1. Denote sλ the Schur symmetric functions indexed by λ ` n. sλ is the generating
function for semistandard Young tableaux of shape λ. It follows (see e.g. [9,
7.19.7]) that

sλ(X) = ∑
T∈SSYT(λ)

XT = ∑
T∈SYT(λ)

FDes(T)(X). (1)

2. There are various descent preserving bijections relating sets of permutations and
standard Young tableaux, e.g. the celebrated Robinson-Schensted (RS) correspon-
dence. The proof in [3] also uses such a bijection between arc permutations and
standard Young tableaux of shapes (n− k, 1k) and (n− k− 2, 2, 1k).

A type B extension of Schur-positivity deals with Bn, the hyperoctahedral group of
order n instead of Sn. Bn is composed of all permutations π on

{-n, · · · , -2, -1, 0, 1, 2, · · · , n}

such that π(−i) = −π(i) for all i. Such permutations usually referred to as signed
permutations are fully described by their restriction to [n]. To extend items 1 and
2 above, two options are available and depend on the definition for the descent of
signed permutations. In [1], Adin et al. use the notion of signed descent set, i.e. the
couple (S, ε) defined for π ∈ Bn as S = {n} ∪ {1 ≤ i ≤ n− 1 | π(i) > 0 and π(i) >
π(i + 1) or π(i) < 0 and either π(i + 1) > 0 or |π(i)| > |π(i + 1)|} and ε is the map-
ping from S to {−,+} defined as ε(s) = + if π(s) > 0 and ε(s) = −, otherwise. There
is a signed descent preserving analogue of the RS correspondence relating signed per-
mutations and bi-tableaux, i.e. couples of Young tableaux with specific constraints and
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[1] proves an analogue of Equality (1) between their generating function and Poirier’s
signed quasisymmetric functions. While the authors succeed in extending most of the
results known in type A, providing another framework relying on a more intuitive
definition of descent for signed permutations appears as a natural question. Indeed
one can simply define the descent set of π ∈ Bn as the subset of {0} ∪ [n− 1] equal
to Des(π) = {0 ≤ i ≤ n− 1 | π(i) > π(i + 1)}. The descent preserving analogue of
the RS correspondence in this case relates signed permutations and domino tableaux
(see next section). We use the generating function for domino tableaux and Chow’s
type B quasisymmetric functions to develop this alternative type B extension of Schur-
positivity. Moreover, we introduce a new descent preserving bijection between signed
arc permutations and domino tableaux to show that the former set is type B Schur-
positive according to the definition of descent stated above.

A new definition of type B Schur-positivity based on Chow’s quasisymmet-
ric functions and domino functions

Domino tableaux and Chow’s type B quasisymmetric functions

For λ ` 2n, a standard domino tableau T of shape λ is a Young diagram of shape
shape(T) = λ tiled by dominoes, i.e. 2 × 1 or 1 × 2 rectangles filled with the ele-
ments of [n] such that the entries are strictly increasing along the rows and down the
columns. In the sequel we consider only the set P0(n) of empty 2-core partitions λ ` 2n
that fit such a tiling. A standard domino tableau T has a descent in position i > 0 if
i + 1 lies strictly below i in T and has descent in position 0 if the domino filled with
1 is vertical. We denote Des(T) the set of all its descents. A semistandard domino
tableau T of shape λ ∈ P0(n) and weight w(T) = µ = (µ0, µ1, µ2, · · · ) with µi ≥ 0
and ∑i µi = n is a tiling of the Young diagram of shape λ with horizontal and vertical
dominoes labelled with integers in {0, 1, 2, · · · } such that labels are non decreasing
along the rows, strictly increasing down the columns and exactly µi dominoes are
labelled with i. If the top leftmost domino is vertical, it cannot be labelled 0. Denote
SDT(λ) (resp. SSDT(λ)) the set of standard (resp. semistandard) domino tableaux
of shape λ.

T1 =

1 2 3

4

5

6

7

8 T2 =

1 2
3

4
5

6

7

8 T3 =

0 0

2
2

5

5
5

5

7

Figure 1: Two standard domino tableaux T1 and T2 of shape (5, 5, 4, 1, 1) and de-
scent set {0,3,5,6} and a semistandard tableau T3 of shape (5, 5, 4, 3, 1) and weight
µ = (2, 0, 2, 0, 0, 4, 0, 1).

Chow defines in [2] an analogue of Gessel’s algebra of quasisymmetric functions that
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is dual to the Solomon’s descent algebra of type B. Let X = {x0, x1, · · · , xi, · · · } be a
set of totally ordered commutative indeterminates and I be a subset of {0} ∪ [n− 1],
he defines a type B analogue of the fundamental quasisymmetric functions

FB
I (X) = ∑

0=i0≤i1≤i2≤...≤in
j∈I⇒ij<ij+1

xi1 xi2 . . . xin .

Note the particular rôle of the variable x0. Given a semistandard domino tableau T of
weight µ, denote XT the monomial xµ0

0 xµ1
1 xµ2

2 · · · . In [8], we introduce a variant of the
generating function Gλ for semistandard domino tableaux of shape λ ∈ P0(n) taking
into account the zero values called domino function and show that it is related with
type B fundamental quasisymmetric functions through:

Gλ(X) = ∑
T∈SSDT(λ)

XT = ∑
T∈SDT(λ)

FB
Des(T). (2)

Type B Schur positivity

Similarly to the type A case, given any subset B of Bn we look at the Chow’s type B
quasisymmetric function

Q(B)(X) = ∑
π∈B

FB
Des(π)(X).

Definition 1. We say that a set B ⊂ Bn is type B Schur positive or G-positive if the
function Q(B) can be written as a non-negative sum of domino functions.

Remark 2. Let X∗ = X \ {x0}. According to our definition of type B Schur positivity,
the fact that the quasisymmetric function Q(B) is G-positive does not imply that it
belongs to the set of symmetric functions Λn[X]. Rather it belongs to the vector
space ΛB

n [X] spanned by the functions of the form xk
0 f (X∗) where f is any symmetric

function of Λn−k[X∗]. Namely, if Q(B) is G-positive then

Q(B) ∈ ΛB
n [X] =

n

∑
k=0

xk
0Λn−k[X∗].

Remark 3. The set of domino functions {Gλ}λ∈P0(n) is not linearly independent and is
not a basis of ΛB

n [X]. As a result, there might be more than one way to decompose a
function in ΛB

n [X] as a sum of domino functions. However, we have the two following
remarks.

• Using a well known bijection between partitions λ in P0(n) and pairs of par-
tition (λ−, λ+) such that |λ−| + |λ+| = n. One can show that the subfamily
{Gλ−,(k)}k≤n,λ−`n−k is a basis of ΛB

n [X].

• Domino functions can be expanded as a non-negative sum of the sB
(n−|ρ|,ρ)(X) =

xn−|ρ|
0 sρ(X∗) (|ρ| ≤ n) which is a natural basis of ΛB

n [X]. As a result, if a function
Q(B) is G-positive, then it can also be decomposed with non-negative coeffi-
cients in the basis sB

(n−|ρ|,ρ).
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We proceed with our first examples of G-positive sets.

Proposition 4. The inverse descent sets DB,−1
n,J = {π ∈ Bn | Des(π−1) = J} are G-positive.

Proof. According to the type B analogue of the RS-correspondence, there is a de-
scent preserving bijection between signed permutations π of Bn and couples of stan-
dard domino tableaux (Pπ, Qπ) such that shape(Pπ) = shape(Qπ) ∈ P0(n). We have
Des(π) = Des(Qπ) and Des(π−1) = Des(Pπ). It follows

Q(DB,−1
n,J ) = ∑

π∈Bn
Des(π−1)=J

FDes(π) = ∑
λ∈P0(n)

∑
P∈SDT(λ)
Des(P)=J

∑
Q∈SDT(λ)

FB
Des(Q).

The proof follows from Equation (2).

Using the same bijection between signed permutation and couples of domino tableaux,
another important example of G-positive set is type B Knuth classes. Given a standard
domino tableau T we denote the corresponding type B Knuth class CT = {π ∈ Bn |
Pπ = T}.

Proposition 5. Let λ ∈ P0(n) and T ∈ SDT(λ). The type B Knuth class CT is G-positive.

Proof. Compute Q(CT) using the type B analogue of the RS-correspondence.

Q(CT) = ∑
π∈Bn
Pπ=T

FB
Des(π) = ∑

Q∈SDT(λ)
FB

Des(Q) = Gλ.

Application to signed arc permutations

A permutation π ∈ Bn is called a signed arc permutation if for 1 ≤ i ≤ n the
set {|π(1)|, |π(2)|, · · · |π(i − 1)|} is an interval in Zn and π(i) > 0 if |π(i)| − 1 ∈
{|π(1)|, |π(2)|, · · · |π(i− 1)|} and π(i) < 0 otherwise. The set of signed arc permu-
tations is denoted by As

n. One can prove (see [4]) that signed arc permutation are
exactly those permutations of Bn that avoid the following 24 patterns:

[1,−2, 3], [1, 3, 2], [2,−3, 1], [2, 1, 3], [3,−1, 2], [3, 2, 1].

The main result of this paper follows:

Theorem 6. The set of signed arc permutations As
n is G-positive. Moreover,

∑
π∈As

n

FB
Des(π) = G(2n) + G(2n−1,1) + G(2n−2,1,1) + G(2n−3,1,1,1) + 2 ∑

a≥2n−a≥2
G(a,2n−a)

+ ∑
a≥2n−a−2≥2

G(a,2n−a−2,2) + ∑
a≥2n−a−2≥2

G(a,2n−a−2,1,1). (3)
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To prove Theorem 6 we introduce a new descent-preserving bijective map from As
n to

the sets of standard domino tableaux with shapes equal to the indices of the domino
functions in formula 3.
We start by giving a more precise description of signed arc permutations. Given two
sequences of integers A and B, denote A sh B the set of integers sequence π consisting
of all elements of A and B such that A and B form ordered subsequences of π. The
following table breaks the set of signed arc permutations into 6 non overlapping types.
Types 1 and 2 have only either positive or negative entries. The four remaining types
have at least one negative and one positive integer and are characterised according of
the sign of their entries with absolute value 1 and n.

The next step is to build the bijections with standard domino tableaux. We start with
types 5 and 6.

Proposition 7. Both type 5 and type 6 permutations are in descent-preserving bijection with
the set of standard domino tableaux of shapes (a, 2n− a) for a such that a ≥ 2n− a ≥ 2.

Proof. We give the proof for type 5 permutations but the same reasoning applies to
type 6. Firstly, map π0 = (-1, 2 · · · n) to the standard domino tableau T0 composed
of n vertical dominoes. We have Des(π0) = Des(T0) = {0}. Secondly, let π =
π1π2 · · ·πn 6= π0. We build recursively a two-row standard domino tableau according
to the following procedure. At step 1 ≤ i ≤ n we add a domino with label i.

• if πi > 0, add a horizontal domino on the first row in rightmost position.

• if πi < 0, we add either a horizontal domino in the second row or a vertical
domino across the two rows in rightmost position. As the difference of lengths
is even, only one of these two positions are available.

The construction is clearly bijective and descent preserving. Indeed, there is a descent
at i > 0 in the tableau if πi > 0 > πi+1 and at i = 0 if π1 < 0, i.e. exactly when we
have a descent in type 5 signed arc permutations.

The two following bijections are modifications of the bijection above and are left to
the reader.

Proposition 8. Type 1 and type 2 permutations together are in descent-preserving bijection
with the set of standard domino tableaux of shapes (2n), (2n− 1, 1), (2n− 2, 1, 1) and (2n−
3, 1, 1, 1).
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Proposition 9. Type 4 signed arc permutations are in descent preserving bijection with stan-
dard domino tableaux of shape (a, 2n− a− 2, 1, 1) for a such that a ≥ 2n− a− 2 ≥ 2.

The type 3 case is more complicated. For any type 3 signed arc permutation π, one
should consider seven different cases depending on the existence or not of negative
numbers before n, between n and 1 and after 1. All together, these cases lead to the
following proposition, which we give here without proof:

Proposition 10. Type 3 signed arc permutations are in descent preserving bijection with
standard domino tableaux of shapes (a, 2n− a− 2, 2) for a such that a ≥ 2n− a− 2 ≥ 2.

Figure 2: Examples of the bijections above. Tableaux T1, T2, T3, T4 and T5 correspond
respectively to the permutations (4 5 6 7 1 2 3), (-3 -2 -1 -7 -6 -5 -4), (-4 -3 5 6 7 -2 1),
(-3 4 -2 -1 -7 5 -6) and (-5 6 -4 7 -3 -2 -1) of respective types 1, 2, 3, 4 and 5.

One finishes the proof of Theorem 6 using the descent preserving bijections above to
write:

∑
ω∈As

n

FB
Des(ω) = ∑

T∈SDT(2n)
FB

Des(T) + ∑
T∈SDT(2n−2,1,1)

FB
Des(T) + ∑

T∈SDT(2n−1,1)
FB

Des(T) + ∑
T∈SDT(2n−3,1,1,1)

FB
Des(T)

+ ∑
a,T∈SDT(a,2n−a−2,2)

FB
Des(T) + ∑

a,T∈SDT(a,2n−a−2,1,1)
FB

Des(T) + 2 ∑
a,T∈SDT(a,2n−a)

FB
Des(T)

which gives Theorem 1 after application of Equation (2).
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The Substitution Decomposition of Matchings and RNA Secondary

Structures

Vince Vatter University of Florida

This talk is based on joint work with Aziza Jeffersion

The substitution decomposition (also known as the modular decomposition) has proved
to be a versatile tool in the study of a wide variety of combinatorial objects. This con-
cept dates back to a 1953 talk of Fraïssé [6], although its first significant application
was in Gallai’s 1967 paper [7] (see [12] for a translation). In 1980, Földes [5] de-
scribed the substitution decomposition in the general context of relational structures,
and Möhring and Radermacher [14] surveyed several applications of the approach in
1984. More recently, the substitution decomposition has been applied to enumerative
problems in the study of permutation patterns. In particular, Albert and Atkinson [1]
established that permutation classes with only finitely many simple permutations
have algebraic generating functions.

We develop the theory of the substitution decomposition of matchings. We use the
term matching as shorthand for a complete, ordered matching on [2n] = {1, 2, . . . , 2n},
which means our matchings have labeled vertices [2n] and every vertex is incident to
precisely one edge. We refer to the number of edges in a matching as the size of the
matching and thus there are (2n− 1)!! matchings of size n.

While one inspiration for this work is the growing interest in the enumeration of
pattern-avoiding matchings [2, 4, 3, 8, 9, 10, 11, 13], much of which has been done by
researchers from the permutation patterns community, our primary motivation is that
the substitution decomposition proves to be an ideal language in which to describe
various families of RNA secondary structures. We refer to Reidys’ text [15] for an
overview of RNA secondary structures in general.
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Figure 1: The containment order on matchings.

The matching M is said to contain the matching N if one can obtain N from M by
deleting edges and relabeling the vertices in the unique order-preserving manner;
otherwise we say that M avoids N. For example, the shaded edges in the matching in
Figure 1 show that this matching contains the matching of size 3. On the hand, it
can be checked that this matching avoids , as it does not contain a nested sequence
of three edges.

This order on matchings is connected to the usual permutation pattern order by what
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123 132 213 231 312 321

Figure 2: The permutational matchings corresponding to permutations of length
three.

we call permutational matchings (following Jelínek [8] for the term but Bloom and
Elizalde [2] for the definition). Given a permutation π of length n, the permutational
matching corresponding to π, which we denote by Mπ, is the matching on the ver-
tices [2n] in which vertex i is adjacent to vertex (2n + 1− π(i)). Figure 2 shows the
permutational matchings of size three.

It is easy to verify that the permutation σ is contained in the permutation π if and only
if the matching Mσ is contained in the matching Mπ. Thus the study of permutation
patterns is the special case of the study of matching patterns that avoid the matching
consisting of two non-nesting, non-crossing edges, .

Our main result lifts the main enumerative result of Albert and Atkinson [1] to the
matching context.

Theorem 1. Every matching class with only finitely many strongly indecomposable match-
ings has an algebraic generating function.
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Homomorphisms on Noncommutative Symmetric Functions and

Permutation Enumeration

Yan Zhuang Brandeis University

Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thibon in their seminal 1995 paper [7]
introduced the algebra Sym of noncommutative symmetric functions and elucidated
its connections to combinatorics, representation theory, Lie algebras, and mathemat-
ical physics. However, it is worth noting that noncommutative symmetric functions
implicitly appeared earlier in the Ph.D. thesis of Ira Gessel [8] in the context of per-
mutation enumeration. Gessel showed that many permutation enumeration formulas
involving descents can be proven by first deriving a lifting of the formula in Sym
and then applying an appropriate homomorphism. Moreover, he proved a result that
we call the “run theorem”, which allows one to obtain noncommutative symmetric
function formulas for counting permutations with restrictions on the lengths of their
increasing runs (i.e., distances between consecutive descents).

In a series of recent papers [10, 17, 18], we further develop this method of permuta-
tion enumeration, introducing new homomorphisms and a generalization of the run
theorem which allows for a much wider variety of restrictions on run lengths. This
machinery is used to provide new derivations of formulas previously obtained by
Carlitz [1], Chebikin [2], David–Barton [3], Elizalde [4], Elizalde–Noy [5], Entringer
[6], Petersen [11, 12], Remmel [13], Stanley [14, 15], and Stembridge [16], as well as to
prove a myriad of new formulas. These include a few results on consecutive pattern
avoidance.

The newest development in this domain utilizes the theory of shuffle-compatible per-
mutation statistics [9]. It can be proven that each shuffle-compatible permutation
statistic gives rise to a homomorphism on Sym which can be used to count permu-
tations by the corresponding “inverse statistic”. For example, given a permutation π,
let des(π) denote the number of descents of π and let ides(π) denote the number of
descents of π−1. Also, let

Mides
m,n (t) := ∑

π∈Avn(12···m)

tides(π)+1

denote the polynomial encoding the distribution of the ides statistic over length n
permutations avoiding the increasing consecutive pattern 12 · · ·m. Then the homo-
morphism arising from the shuffle-compatibility of the descent number des can be
used to obtain the new formulas

∞

∑
n=0

Mides
m,n (t)

(1− t)n+1 xn =
∞

∑
k=0

[
∞

∑
j=0

((
k + jm− 1

k− 1

)
xjm −

(
k + jm
k− 1

)
xjm+1

)]−1

tk (♥)

= m
∞

∑
k=0

[
m−1

∑
j=1

1−ω−j

(1−ω jx)k

]−1

tk
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where ω = e2πi/m. Taking the limit of (♥) as m → ∞ and extracting coefficients of xn

recovers the classical identity

An(t)
(1− t)n+1 =

∞

∑
k=0

kntk

for the Eulerian polynomials An(t) defined by

An(t) := ∑
π∈Sn

tdes(π)+1.

In this talk, we give an overview of this method of using homomorphisms on non-
commutative symmetric functions in permutation enumeration, survey some of the
formulas that can be obtained using this method, and conclude with a brief discus-
sion of possible future directions of work involving applications of this method to
consecutive pattern avoidance.
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